微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > ∑-△ADC原理及应用

∑-△ADC原理及应用

时间:02-19 来源:本站整理 点击:

这种变送器首先将信号数字化,然后采用微控制器内置的算法进行处理,对增益和零点进行标准化,对传感器进行线性化,最后再将信号转换到模拟域,作为一个标准电流通过环路传送。第三代4~20mA变送器被称为"灵巧且智能",实际上是在前述功能的基础上增加了数字通信(和传统的4—20mA信号共用同一条双绞线)。利用通信信道可以传送一些控制和诊断信号。MAX1402这样的低功耗器件对于此类应用非常适合,250 uA的功耗可以为变送器中的其余电路节省出可观的功率。智能变送器所采用的通信标准是Hart协议。这是一种基于Bell 202电信标准的通信协议,工作于频移键控方式(FSK)。数字信号由两种频率组成:1200Hz和2200Hz,分别对应于数码1和0。两种频率的正弦波

  叠加在直流模拟信号上,通过同一条电缆同时传送。因为FSK信号的平均值总是零,因此4—20mA模拟信号不会受到影响。在不干扰模拟信号的前提下,数字通信信号具有每秒更新2—3个数据的响应速度。通信所需的最小环路阻抗是23 Ω。

  小结
        在高集成度调理系统出现之前,过程控制通常采用多个独立的芯片实现信号调理和处理。∑-△技术降低了这部分电路的成本、空间需求和功率需求(事实上多数应用只需要+3V/+5V单电源)。这种特性尤其适合于电池供电的便携系统。元件数量的降低同时还改善了系统的可靠性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top