开关电源的EMC技术
电子发烧友网:本文主要阐述开关电源的电磁骚扰抑技术(EMC)。开关电源电磁骚扰的抑措施对开关电源产生的 EMC 所采取的抑制措施,主要从两个方面着:一是减小骚扰源的骚扰强度;二是切断骚扰传播。为了达到这个目的主要从以下几个方面着手:选择合适的开关电源工作方式及工作频率;选择合适的电路元件;采用正确的屏蔽方式、接地、滤波措施,使用合理的元件布局等几种方法。
1 减小骚扰源的骚扰强度
选择合适的开关电源的工作方式不同,他们的产生的电磁骚扰强度及所产生的电磁骚扰控制难度是不同的。例如:自激式开关电源在负载轻重不同时不但脉冲宽度会改变,其开关频率变化很大,这样给克服开关脉冲骚扰和控制其传播带来很大的难度;他激式开关电源开关频率不变,它靠改变脉冲宽度来保持输出稳定。显然,他激式开关电源更容易控制电磁骚扰。隔离型开关电源比隔离型开关电源骚扰小。桥式整流产生的骚扰比其它整流方式产生的骚扰小。光耦隔离比变压器隔离的骚扰更容易控制。对 隔离型开关电源谐振型比极性反转型骚扰小多了。
开关电源的工作频率也与骚扰强度密相关。低的开关电源工作频率不但可以减小骚扰的高频分量,其传导骚扰和辐射骚扰的传播效率会大大降低。实际设计中,我们进行工作方式选择时,综合考虑其电磁容性能,这样往往可以取到事功倍的效果。至于工作频率,在不增加成本和影响工作效率的情况下当然是越小越好。
选择合适的电路元件
开关电源电路是开关电源产生的电磁骚扰最直接和最主要的来源。在开关回路中,开关管是核心。我们实际设计和测试中发现,我们用同样耐压的电流容量的不同品牌的开关管进行辐射骚扰测试,整体骚扰最大的与最小的可能相差 15-20dB。
对传导骚扰的频率高端,我们也发现同样的现象(对传导骚扰的频率低端这种现象没有高端明显)。这与开关管在设计中有否考虑电磁容有关。好的开关管在设计中考虑到了高频率抑制信开关瞬间的震荡并顾了转换效率。这种开关管成本可能会高些。开关回路中另一关键部件是脉冲变压器,脉冲变压器,对电磁容的影响表现在两个方面:一个是初级线圈与次级线圈间加静电屏层并引出接地,该接地线尽量靠近开关管的发射极接直流输入的 0V地(热地),这样可以大大减小分布电容cd,从而减小了初、次级的电场的耦合骚扰。
为了减小脉冲变压器的漏磁,可以选择封闭磁芯(如圆环),封闭磁芯比开口磁芯的漏磁小。不可以通过在脉冲变压器外包高磁导率的屏材料抑制漏磁,从 而减小了通过漏磁辐射的骚扰。开关回路中的C1 选择也很关键,选择高频特性良好的电容或在其上并联一个高频电容,降低高频阻抗,可以减少高频电流以差模方式传导到交流电源中去形成传导骚扰。在二次整流回路中,整流二极管D2 常关键。在低压大电流 的整流回路中,快速恢复的肖特基是一种较好的选择。对高压输出电路可选用其它快速恢复二极管或带软恢复特性的二极管。
骚扰吸收回路
可在开关回路的开关T两端并联RC吸收回中如图 3(b)所示,或在开关管T两端并联RC吸收回路如图 3(a)所示,或在 RC/DRC回路可吸收天开关管T接通和断开瞬间产生的较高的浪涌尖峰电压,降低开关回路的骚扰。如图 3(c)所示,在输出端的整流二极管D2 和D1 正极引线中串接带可饱和磁芯的线圈或微晶磁珠(co系)sc1、sc2。可饱和磁芯线圈/微晶磁珠在通过正常电流时磁芯饱和,电感量很小,不会影响电路正常工作,一旦电流要反向流过时,它将产生很大的反电势,阻止反向电流的上,因此将它与二极管D1、D2 串联就能有效地抑制二极管D2 的反向浪涌电流。徽晶磁珠可以直接套在二极管的引线上,使用方便,效果也比RC吸收回路好。另外,D1、L、C2组成的滤波网络可以更好滤除输出直流中的高频纹波,减小输出端的高频差模骚扰。
一次整流回路中PFC网络
对一次整流回路,最显著的骚扰是整流回路对交流电网的选择性取电引起的供电网络的波形畸变,功率因素偏低。为解决这个问题,可在一次整流回路加入现成的PFC(功率因素控制)模板。该模块分有源和无源两种,有源模板效果更好,但电路复杂,成本较高。为了更适合所设计的产品,也有公司提供PFC电路后一可将功率因素从 0.4 提到 0.9 以上。可以使所设计的开关电源顺利通过GB176250.1-1998 的电流谐波测试。
- 电磁兼容EMC预测试与鉴定测试(09-25)
- EMC常见缩略语清单(03-19)
- EMC(电磁兼容性标准)认证流程图(02-11)
- 基于仿真软件的系统EMC设计(01-03)
- 关于照明光源频闪的问题(03-01)
- 基于仿真软件的系统EMC设计之工程实例(01-12)