AI进入爆发期,千亿芯片市场空间
地平线:2016年3月奇点汽车发布会上,国内人工智能公司地平线首次展示了其先进辅助驾驶系统(ADAS)原型系统—雨果平台。从地平线官方的视频和图片资料来看,这套系统可以实时检测车辆、车道线和行人,检测效果优于NVDIA于2016年初CES上提供的展示效果。在2017年1月的CES上,地平线又携手英特尔于全球消费电子展CES共同发布基于BPU架构的最新的高级辅助驾驶系统。在硬件方面,地平线将其BPU架构实现在ASIC上,并集成到雨果平台上。地平线的第一代人工智能处理器"盘古"已于2017年6月在台积电流片。产业调研显示,地平线也是目前唯一在四大汽车市场—美国、德国、日本和中国,与顶级OEMs和Tier1s 建立重要客户关系的中国初创企业。中国中央电视台,美国MITTechnology Review等众多媒体报道了地平线在自动驾驶和人工智能处理器设计方面的进展。
2.3 未来趋势:专属ASIC芯片是未来智能汽车市场主流
我们判断,专属ASIC芯片是智能汽车市场未来主流。得益于ASIC优良的性能,定制芯片可将车载信息的数据处理速度提升更快,并将能耗维持在相对较低水平,最重要的是,ASIC可以更好的满足车载应用下重点关心的"最差情况处理"的延时问题。但鉴于其研发周期长且成本高昂,目前车载场景下,主流厂商仍然考虑采用GPU作为主流方案,预计随着ADAS定制化需求的增加,未来专用芯片将成为主流。
3. 终端落地之AI+消费电子:百花齐放的未来最大应用场景
3.1 智慧产品空间:千亿美元市场,AI或引领新一轮消费电子革命
ASIC将成为AI终端之消费电子的必然选择。在过去的20年,主导消费电子的终端应用从PC切换到智能手机,然而苹果发布 iPhone 已有十年,全球智能手机渗透率已近饱和。据 Gartner 预测, 2016~2019年PC 出货将出现负增长,而智能手机的出货增速仅维持在1~2%。因此从2015年以后,大家开始寻找消费电子行业下一个风口,纷纷开始关注无人机、AR/VR、智能音响等领域。此类智能硬件都可与AI结合,AI处理芯片的加入将加速此类消费电子行业的发展,重点落地在手机、无人机、AR/VR、智能音响、机器人等子领域。其中,手机是目前电子行业最强粘性终端之一,也是驱动行业发展的最重要下游产品。随着AI芯片的加入,手机有望加速更新,继功能手机向智能手机的变革之后,再次向智慧手机进化,有望迎来新一波换机潮。
3.2 智慧手机=AI+AR+智能手机:伟大的新一轮强粘性终端革命
人工智能元素使智能手机向智慧手机转变,ASIC低成本低功耗低面积占据核心优势。电子行业本身利用强粘性需求所驱动,驱动发展周期约为5到7年。2002年之前由个人电脑驱动,2007年之前由功能手机驱动,2015年之前由智能手机驱动。但2015年以后,包括A客户推出"玫瑰金""土豪金"这样的微创新,都表现了电子行业渗透率达到一定程度之后创新开始变缓。从2015年以后,业界普遍开始寻找电子行业下一个风口,包括无人机、可穿戴AR/VR、智能音响等,但是目前此类智能硬件都不属于强粘性终端。而只有类似手机每年出货在15亿到20亿部这样巨大量的强粘性终端才能够支撑电子行业进一步的变革与发展。手机仍将是未来几年不可替代的强粘性电子终端。目前AI在手机里面主要是辅助处理图形图像的识别(比如拍照的快速美颜)以及语音语义的识别等应用场景。但目前此类应用对AI算法处理速度的要求并不高。随着如AR功能的引入,并随着光学声学等传感器不断演进,对AI的计算能力需求会迅速增加,因此需要引入AI芯片来增加手机的运算能力。AI硬件芯片的引入或集成将有益于解决手机终端创新不足及目前渗透率过高的问题,未来与手机AR和3D应用的结合,会进一步推动智慧手机AI硬件的发展,从而带动手机产业链的发展。同时手机对功耗要求极低,ASIC低成本低功耗低面积将占据核心优势。
苹果:"Bionic神经引擎"助力苹果迎来新一轮技术革新。苹果在当地时间9月12日发布了本年度最重量级的产品——iPhone X(iPhone 10)。iPhone X 最引人关注的是其引入了Face ID解锁功能,手机可通过对人面部识别实现瞬间解锁。iPhone X集成了众多传感器,面部识别采集点达三万个,采集完的脸部信息由神经网络进行建模处理。为此,苹果专门打造了专用神经网络处理芯片A11"Bionic神经引擎"。该神经引擎使用双核设计,每秒运算6000亿次,面部信息数据都由A11引擎处理,不会送到云端。该芯片旨在将主处理器(CPU)和图像处理器(GPU)巨大的计算量分开,把面部识别、语音识别等 AI 相关的任务卸载到 AI 专用模块(ASIC)上处理,以提升
- 解密英伟达Tesla P100、GP100、DRIVE PX2平台(04-26)
- 人工智能处理器三强Intel/NVIDIA/AMD谁称霸?(07-23)
- 2016年人工智能与深度学习领域的十大收购(07-26)
- 人工智能实现的流派 FPGA vs. ASIC看好谁?(08-27)
- IBM沃森能否在人工智能领域突破重围?(09-19)
- 英特尔与高通将在汽车芯片市场再次对决(上)(10-03)