微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 应用实操:4800字,基站无源交调这个蜂窝通信重大问题,这样来排解

应用实操:4800字,基站无源交调这个蜂窝通信重大问题,这样来排解

时间:08-11 来源:Excelpoint世健 点击:

脉冲。另外,FDR要比TDR灵敏得多,能以更高的精度定位系统性能故障或降低的地方。频域反射法原理涉及源信号和反射信号(来自传输线路中的故障和其他反射特性)的矢量相加。TDR采用非常短的直流脉冲作为激励信号,其本身就能覆盖非常宽的带宽,而FDR扫描RF信号实际上是在特定目标频率(通常在系统的预期工作范围内)运行。

图10.FDR原理,扫描频率回波损耗与距离的关系
>>>>

PIM定位

必须注意,虽然线路扫描可以指示阻抗不匹配,从而指示传输线路PIM源,但PIM和传输线路阻抗不匹配可以是互斥的。PIM非线性可能出现在线路扫描结果未指示任何传输线路问题的地方。因此,若要给用户提供一种解决方案,要求不仅能指示PIM存在,而且能准确识别传输线路上何处发生该问题,就需要采用更复杂的实施方案。

综合PIM线路测试的工作模式与针对设计引入PIM抵消所述的模式相似,不同之处是算法检查交调产物时间延迟估计的情况不同。应当注意,这些情况中的优先事项并非PIM伪像的抵消,而是定位传输线路上何处发生交调。该概念也被称为"PIM定位"(DTP)。例如,在一个双音测试中,

信号音1:

信号音2:

w1和w2为频率; θ1和θ2为初始相位;t0为初始时间。

IMD(例如低端)将为:

很多现有解决方案要求用户中断传输路径,插入一个PIM标准装置(它能产生固定量的PIM,用来校准测试设备)。使用PIM标准装置可为用户提供一个基准IMD,它在传输路径的特定位置/距离处并具有已知相位。图11(a)显示了概况。IMD相位θ32(如图11所示)用作基准位置0。

图11.PIM定位

一旦完成初始校准,便重构系统并测量系统PIM,如图11(b)所示。θ32和θ'32之间的相位差可用来计算到PIM的距离。

其中,D为到PIM的距离,S为波传播速度(取决于传输介质)。

装配和锈体PIM可能是一个慢速递增的过程;完成安装后初期,基站可以高效率工作,但经过一段时间后,此类PIM现象可能会开始变得突出。振动或风等环境因素可能会影响PIM水平,故PIM的性质和特点是动态起伏不定的。掩盖或抵消PIM不仅可能很困难,而且可能被认为掩盖了更为严重的问题,若不加以解决,可能引发整体系统故障。这种情况下,运营商会希望避免系统整体停机的相关成本,快速定位引起PIM的器件并予以更换。

PIM定位技术(DTP)还为基站运营商提供了这样一种可能性:跟踪系统性能随时间而降低的情况,提前发现潜在问题。有了这些信息,便可在计划维修期间更换薄弱点,避免代价巨大的系统停机和专门维修工作。

03结语

无源交调并不是什么新鲜事。这种现象已经存在多年,为人所知也有段时间了。近年来,业界的两种不同变化又把它拉回人们的视野:

1

高级算法现在可通过一种智能方式来检测和定位PIM,并且能酌情予以补偿。以前的无线电设计人员必须选择能够满足特定PIM性能要求的器件,但在PIM抵消算法的帮助下,他们现在有了更大的选择自由。他们能够选择企及更高的性能,或者用成本较低且尺寸较小的器件实现相同的性能水平。抵消算法通过数字化方式辅助硬件元件。

2

随着基站塔的密度和多样性爆炸式增长,我们面临着特殊系统设置(例如天线共享)带来的全新挑战。算法抵消取决于对主要传输信号的了解。在塔上空间宝贵的情况下,不同发射机可能共享单根天线,导致出现不良PIM效应的可能性大大增加。这种情况下,算法可能知道发射机路径某些部分的信息,并且可以有效工作。而在发射路径某些部分信息未知的情况下,第一代高级PIM抵消算法的性能或实现可能会受限。

随着基站设备领域的挑战难度不断加大,PIM检测和抵消算法在短期内预计能给无线电设计人员带来相当大的好处和优势,但要求开发工作跟上未来挑战的步伐。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top