微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 半英寸 UMTS 基站接收器

半英寸 UMTS 基站接收器

时间:10-08 来源:凌力尔特公司 高级模块设计工程师 Douglas Stuetzle 模块开发经理 Todd Nelson 点击:

在满足宏蜂窝基站性能要求的前提下,能达到多高的集成度? 工艺技术仍然限定某些重要的功能部件必需运用特殊的工艺来制造:在射频 (RF) 领域采用 GaAs 和 SiGe、高速 ADC 采用细线 CMOS,而高品质因数滤波器则无法使用半导体材料得以很好地实现。此外,市场还需要更高的密度。

考虑到上述问题,我们决定用系统级封装 (SiP) 技术来开发占用约 1/2 平方英寸 (刚刚大于 3cm2) 面积的接收器。接收器的边界是 50Ω RF 输入、50Ω LO 输入、ADC 时钟输入及数字 ADC 输出。这留待增加 LNA 与 RF 滤波以用于输入、LO 和时钟发生、和数字输出的数字处理。在 15mm x 22mm 封装内,是采用 SiGe 高频组件的信号链路、分立式无源滤波和细线 CMOS ADC。

以下是对两个微型模块 (μModule?) 产品进行的设计分析:一个是实现直接转换接收器的 LTM9004;另一个是实现 IF 采样接收器的 LTM9005。

设计目标

设计目标是 UMTS 上行链路 FDD 系统,特别是处于工作频段 I 的中等覆盖区域基站 (详见 3GPP TS25.104 V7.4.0 规范)。就接收器而言,灵敏度是一个主要的考虑因素,在输入信噪比 (SNR) 为 -19.8dB/5MHz 时,要求为 ≤ -111dBm。这意味着,接收器输入端的有效噪声层必须 ≤ -158.2dBm/Hz。

设计分析    ─  零 IF 或直接转换接收器

LTM9004 是一款直接转换接收器,采用了 I/Q 解调器和基带放大器以及双 14 位、125Msps ADC,如图 1 所示。LTM9004-AC 低通滤波器在 9.42MHz 处有一个 0.2dB 的转角,从而允许 4 个 WCDMA 载波。LTM9004 可与一个 RF 前端一起使用,以构成一个完整的 UMTS 频带上行链路接收器。RF 前端由一个双工器以及一个或多个低噪声放大器 (LNA) 及陶瓷带通滤波器组成。为了最大限度地降低增益和相位失衡,基带链路采用了固定增益拓扑,因此在 LTM9004 之前需要一个 RF 可变增益放大器 (VGA)。以下是此类前端的典型性能例子:

    接收器频率范围:     1920 至 1980MHz
    RF 增益:                最大值为 15dB
    自动增益控制 (AGC) 范围:    20dB   
    噪声指数:                 1.6dB
    IIP2:                       +50dBm
    IIP3:                       0dBm
    P1dB:                    -9.5dBm
    20MHz 时的抑制:            2dB
    发送器频带上的抑制:        96dB
\
图 1:在 LTM?9004 微型模块接收器中实现的直接转换架构

OFFSET ADJUST:偏移调节
DC OFFSET CONTROL:DC 偏移控制

考虑到 RF 前端的有效噪声贡献,LTM9004 引起的最大可允许噪声必须是 -142.2dBm/Hz。LTM9004 的典型输入噪声是 -148.3dBm/Hz,据此计算出的系统灵敏度为 -116.7dBm。

一般情况下,此类接收器可受益于 ADC 之后的数字化信号的某些 DSP 滤波。在该场合中,假设 DSP 滤波器是一款具有 α = 0.22 的 64 抽头 RRC 低通滤波器。为了在存在同通道干扰信号的情况下运作,接收器在最大灵敏度下必须拥有足够的动态范围。UMTS 规范所要求的最大同通道干扰源为 -73dBm。

请注意,就一个具 10dB 波峰因数的已调信号而言,在 LTM9004 IF 通带内 -1dBFS 的输入电平为 -15.1dBm。在 LTM9004 输入端,这相当于 -53dBm,或 -42.6dBFS 的数字化信号电平。

RF 自动增益控制 (AGC) 设定为最小增益时,接收器必须能从手机中解调出 预计所需的最大信号。这种要求最终设定了在或低于 -1dBFS 时,LTM9004必须提供的最大信号。规范中规定的最小通路损耗为 53dB,而且假定手机的平均功率为 +28dBm。那么在接收器输入端,最大信号电平就是 -25dBm。这等效于 -14.6dBFS 的峰值。

UMTS 系统规范中详细说明几种阻断信号。在存在此类信号的情况下只允许进行规定大小的减敏;灵敏度指标为 -115dBm。其中的第一种是一个相距 5MHz 的邻近通道 (处于 -42dBm 的功率级)。数字化信号电平峰值是 -11.6dBFS。DSP 后处理增加 51dB 抑制,因此在接收器输入端,这个信号相当于一个 -93dBm 的干扰信号。结果灵敏度为 -112.8dBm。

接收器还必须与一个相隔 ≥ 10MHz 的 -35dBm 干扰通道相竞争。微型模块接收器的 IF 抑制将使这个干扰通道衰减至相当于峰值为 -6.6dBFS 的数字化信号电平。经过 DSP 后处理,该干扰通道在接收器输入相当于 -89.5dBm,结果灵敏度为 -109.2dBm。

还必须考虑到带外阻断信号,但是这些带外阻断信号的电平与已经讨论过的带内阻断信号相同。

在所有这些场合中,LTM9004 的 -1dBFS 典型输入电平均远远高于最大预期信号电平。请注意,调制通道的波峰因数将大约在 10 至 12dB,因此在 LTM9004 的输出端上,其中最大的一个将达到约 -6.5dBFS 的峰值功率。

最大的阻断信号是 -15dBm CW 音调 (超过接收频段边缘 ≥ 20MHz)。RF 前端将对这个音调提供 37dB 抑制,因此它出现在 LTM9004 的输入端时将为 -32dBm。在这里,这种电平值的信号仍然不得降低基带微型模块接收器的灵敏度。等效的数字化电平峰值仅为 -41.6dBFS,因此对灵敏度没有影响。

另一个不想要的信号功率源是来自发送器的泄漏。因为这是一个 FDD 应用,所以这里描述的接收器将是与一个同时工作的发送器耦合的。该发送器的输出电平假定为 ≤ +38dBm,同时发送至接收的隔离为 95dB。那么在 LTM9004 输入端出现的泄漏为 -31.5dBm,相对于接收信号偏移至少 130MHz。等效的数字化电平峰值仅为 -76.6dBFS,因此没有降低灵敏度。

直接转换架构的一个挑战是二阶线性度。二阶线性度不够将允许想要或不想要的任何信号,以引起基带的 DC 偏移或伪随机噪声。如果这种伪随机噪声接近接收器的噪声电平,那么上面详细讨论过的那些阻断信号将降低灵敏度。在这些阻断信号存在的每种情况下,系统规范都允许灵敏度降低。按照系统规范的规定,-35dBm 阻断通道可以使灵敏度降至 -105dBm。如我们在上面看到的那样,这种阻断信号在接收器输入端构成了一个 -15dBm 的干扰信号。LTM9004 输入端产生的二阶失真大约比热噪声低 16dB,结果预测灵敏度为 -116.6dBm。

-15dBm 的 CW 阻断信号还将导致二阶分量,在这种情况下该分量是一个 DC 偏移。DC 偏移是不想要的,因为它减小了 A/D 转换器能处理的最大信号。一种减轻 DC 偏移影响的可靠方法是,确保基带微型模块接收器的二阶线性度足够高。在 ADC 输入端,由于这一信号而产生的预测 DC 偏移 < 1mV。

请注意,发送器泄漏不包括在系统规范中,因此由于这一信号而产生的灵敏度下降必须保持到最小。发送器输出电平假定为 ≤+38dBm,同时发送至接收的隔离为 95 dB。LTM9004 中产生的二阶失真导致的灵敏度损失将 <0.1dB。

在规范中对 3 阶线性度仅有一个要求。这就是在两个干扰信号存在的情况下,灵敏度不得降至低于 -115dBm。这两个干扰信号是一个 CW 音调以及一个 WCDMA 通道,每个的大小都是 -48dBm。这些干扰信号每个都以 -28dBm 的大小出现在 LTM9004 的输入端。它们的频率与想要的通道相隔 10MHz 和 20MHz,因此 3 阶互调分量落在基带上。这里,这个分量仍然以伪随机噪声形式出现,因此将使信噪比降低。LTM9004 中产生的 3 阶失真大约比热噪声层低 20 dB,预测灵敏度降低 < 0.1 dB。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top