微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 从语言学到深度学习NLP,一文概述自然语言处理

从语言学到深度学习NLP,一文概述自然语言处理

时间:07-22 来源:机器之心 点击:

本文从两篇论文出发先简要介绍了自然语言处理的基本分类和基本概念,再向读者展示了深度学习中的 NLP。这两篇论文都是很好的综述性入门论文,希望详细了解自然语言处理的读者可以进一步阅读这两篇论文。

本文第一部分介绍了自然语言处理的基本概念,作者将 NLP 分为自然语言理解和自然语言生成,并解释了 NLP 过程的各个层级和应用,这一篇论文很适合读者系统的了解 NLP 的基本概念。

第二部分描述的是基于深度学习的 NLP,该论文首先描述了深度学习中的词表征,即从 one-hot 编码、词袋模型到词嵌入和 word2vec 等,我们首先需要数字表征词汇才能进一步做自然语言处理。随后,本论文介绍了各种应用于 NLP 的模型,包括卷积神经网络、循环神经网络、长短期记忆和门控循环神经网络等,这一些模型加上其它如注意力机制那样的技巧就能实现十分强大的能力,如机器翻译、问答系统和情感分析等。

概念基础

自然语言处理(NLP)近来因为人类语言的计算表征和分析而获得越来越多的关注。它已经应用于许多如机器翻译、垃圾邮件检测、信息提取、自动摘要、医疗和问答系统等领域。本论文从历史和发展的角度讨论不同层次的 NLP 和自然语言生成(NLG)的不同部分,以呈现 NLP 应用的各种最新技术和当前的趋势与挑战。

1 前言

自然语言处理(NLP)是人工智能和语言学的一部分,它致力于使用计算机理解人类语言中的句子或词语。NLP 以降低用户工作量并满足使用自然语言进行人机交互的愿望为目的。因为用户可能不熟悉机器语言,所以 NLP 就能帮助这样的用户使用自然语言和机器交流。

语言可以被定义为一组规则或符号。我们会组合符号并用来传递信息或广播信息。NLP 基本上可以分为两个部分,即自然语言理解和自然语言生成,它们演化为理解和生成文本的任务(图 1)。

 

图 1:NLP 的粗分类

语言学是语言的科学,它包括代表声音的音系学(Phonology)、代表构词法的词态学(Morphology)、代表语句结构的句法学(Syntax)、代表理解的语义句法学(Semantics syntax)和语用学(Pragmatics)。

NLP 的研究任务如自动摘要、指代消解(Co-Reference Resolution)、语篇分析、机器翻译、语素切分(Morphological Segmentation)、命名实体识别、光学字符识别和词性标注等。自动摘要即对一组文本的详细信息以一种特定的格式生成一个摘要。指代消解指的是用句子或更大的一组文本确定哪些词指代的是相同对象。语篇分析指识别连接文本的语篇结构,而机器翻译则指两种或多种语言之间的自动翻译。词素切分表示将词汇分割为词素,并识别词素的类别。命名实体识别(NER)描述了一串文本,并确定哪一个名词指代专有名词。光学字符识别(OCR)给出了打印版文档(如 PDF)中间的文字信息。词性标注描述了一个句子及其每个单词的词性。虽然这些 NLP 任务看起来彼此不同,但实际上它们经常多个任务协同处理。

2 NLP 的层级

语言的层级是表达 NLP 的最具解释性的方法,能通过实现内容规划(Content Planning)、语句规划(Sentence Planning)与表层实现(Surface Realization)三个阶段,帮助 NLP 生成文本(图 2)。

 

图 2:NLP 架构的阶段

语言学是涉及到语言、语境和各种语言形式的学科。与 NLP 相关的重要术语包括:

  • 音系学

  • 形态学

  • 词汇学

  • 句法学

  • 语义学

  • 语篇分析

  • 语用学

3 自然语言生成

NLG 是从内在表征生成有含义的短语、句子和段落的处理过程。它是 NLP 的一部分,包括四个阶段:确定目标、通过场景评估规划如何实现目标、可用的对话源、把规划实现为文本,如下图 3。生成与理解是相反的过程。

图 3:NLG 的组件

6 NLP 的应用

NLP 可被他应用于各种领域,例如机器翻译、垃圾邮件检测、信息提取等。在这一部分,该论文对以下 NLP 的应用进行了介绍:

  • 机器翻译

  • 文本分类

  • 垃圾邮件过滤

  • 信息提取

  • 自动摘要

  • 对话系统

  • 医疗

深度学习中的 NLP

以上内容对 NLP 进行了基础的介绍,但忽略了近年来深度学习在 NLP 领域的应用,因此我

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top