基于FPGA平台的手持式频谱分析仪的设计原理
选择的是Maxim公司所提供的MAX11662。其参数如下:VDD = 2.2V ——3.6V, VREF = VDD。
模数转换器的原理框图如下所示:
AD的转换过程包括采样、保持、量化和编码四个阶段。通过按等间隔T对模拟信号进行采样,得到一串采样点上的样本数据,这一串样本数据可看作时域离散信号(序列)。在本次设计中AD有8位,那么每个样本数据用8位二进制数表示,即形成数字信号,因此,采样以后到形成数字信号的这一过程是一个量化编码的过程。
4、放大器原理:
通过低通滤波器所得到的信号可能很微弱,所以加一级前置放大器对所获取的信号进行放大,以期能够得到更易于处理的信号。将放大器前置的目的有两个:①使小输入信号不被后期电路的噪声所淹没;②要防止滤波器电路的噪声被放大。
对于测量放大电路的基本要求是:①测量放大电路的输入电阻应与传感器输出阻抗相匹配;②稳定的放大倍数;③低噪声;④低的输入失调电压和输入失调电流,以及低的漂移;⑤足够的带宽和转换速率;⑥高共模输入范围和高共模抑制比;⑦可调的闭环增益;⑧线性好、精度高;⑨成本低等;
目前广泛应用的是高共模抑制比放大电路,如下图所示:
该共模抑制比电路由三个集成运算放大器组成,其中为两个性能一致(主要是指输入阻抗、共模抑制比和增益)的同相输入通用集成运算放大器,构成平衡对称(或称同相并联型)差动放大输入级,构成双端输入单端输出的输出级,用来进一步抑制的共模信号,并适应接地负载的需要。
输入级的输出电压,即运算放大器输出之差为,其差模增益
由以上公式可知,当性能一致时,输入级的差动输出及其差模增益只与差模输入电压有关,而其共模输出、失调与漂移均在两端相互抵消,因此电路具有良好的共模抑制能力,为消除偏置电流等得影响,通常取。
关于放大器采用的是LM386,LM386是一个用于在低电压消费类应用设计的功率放大器。内部增益为20,输入以地面为参考,而输出被自动偏置到电源电压的一半。静态功耗只有24毫瓦,LM386是电池操作的理想选择。
5、LCD输出显示原理
LCD为7段(或8段)显示结构,故有7个(或8个)段选端,须接段驱动器,LCD的每个字段型要由频率为几十Hz到几百Hz的节拍方波信号驱动。该方波信号加到LCD的公共电极和段驱动器的节拍信号输入端。LCD显示器的驱动接口电路分为静态驱动和动态驱动两种接口形式。
静态驱动接口的功能是将要显示的数据经过译码器译为显示码,再变为低频的交变信号,送到LCD显示器。动态驱动接口通常采用专门的集成芯片来实现。一般采用主驱动器和从驱动器。主、从驱动器都采用串行数据输入,主驱动器可以驱动48个显示字段或点阵,每增加一片从驱动器可以增加驱动44个显示字段或点阵。驱动方式采用1/4占空系数的1/3偏压法。
本设计采用的动态驱动接口串行输出。
FFT分析法 手持式频谱分析仪 FPGA平台 低通滤波器 相关文章:
- 单片机数字滤波的算法(10-12)
- 基于FPGA和IP核的FIR低通滤波器的设计与实现(11-03)
- DAC数模转换后缓冲低通滤波电路(06-03)
- 马达控制三相变频器中相电流Shunt检测电路设计(11-16)
- 运用LTC1569低通滤波连接器电路设计方案(02-27)
- 可变带宽OTA—C低通滤波器电路(02-12)