几款电源电路模块设计详解—电路图天天读(266)
一、电源降压控制电路模块设计
电子电 路通常都工作在正稳压输出电压下,而这些电压一般都是由降压稳压器来提供的。如果同时还需要负输出电压,那么在降压-升压拓扑中就可以配置相同的降压控制 器。负输出电压降压-升压有时称之为负反向,其工作占空比为 50%,可提供相当于输入电压但极性相反的输出电压。其可以随着输入电压的波动调节占空比,以―降压或―升压输出电压来维持稳压。
图1显示了一款精简型降压-升压电路,以及电感上出现的开关电压。这样一来该电路与标准降压转换器的相似性就会顿时明朗起来。实际上,除了输出电压和接地相反以外,它和降压转换器完全一样。这种布局也可用于同步降压转换器。这就是与降压或同步降压转换器端相类似的地方,因为该电路的运行与降压转换器不同。
FET 开关时出现在电感上的电压不同于降压转换器的电压。正如在降压转换器中一样,平衡伏特-微秒 (V-μs) 乘积以防止电感饱和是非常必要的。当 FET 为开启时(如图1 所示的 ton 间隔),全部输入电压被施加至电感。这种电感―点‖侧上的正电压会引起电流斜坡上升,这就带来电感的开启时间 V-μs 乘积。FET 关闭 (toff) 期间,电感的电压极性必须倒转以维持电流,从而拉动点侧为负极。电感电流斜坡下降,并流经负载和输出电容,再经二极管返 回。电感关闭时V-μs 乘积必须等于开启时 V-μs 乘积。由于 Vin 和 Vout 不变,因此很容易便可得出占空比 (D) 的表达式:D=Vout/(Vout " Vin)。这种控制电路通过计算出正确的占空比来维持输出电压稳压。上述表达式和图 1 所示波形均假设运行在连续导电模式下。
降压-升压电感必须工作在比输出负载电流更高的电流下。只是输入电流与输出电流相加。对于和输入电压大小相等的负输出电压(D = 0.5)而言,平均电感电流为输出的2倍。有趣的是,连接输入电容返回端的方法有两种,其会影响输出电容的rms电流。
典型的电容布局是在+Vin和Gnd之间,与之相反。利用这种输入电容配置可降低输出电容的rms 电流。然而,由于输入电容连接至 "Vout,因此 "Vout 上便形成了一个电容性分压器。这就在控制器开始起作用以前,在开启时间的输出上形成一个正峰值。为了最小化这种影响,最佳的方法通常是使用一个比输出电容 要小得多的输入电容,请参见图 2 所示的电路。输入电容的电流在提供 dc 输出电流和吸收平均输入电流之间相互交替。rms电流电平在最高输入电流的低输入电压时最差。因此,选择电容器时要多加注意,不要让其 ESR 过高。陶瓷或聚合物电容器通常是这种拓扑较为合适的选择。
必须要选择一个能够以最小输入电压减去二极管压降上电的控制器,而且在运行期间还必须能够承受得住 Vin 加 Vout 的电压。FET 和二极管还必须具有适用于这一电压范围的额定值。通过连接输出接地的反馈电阻器可实现对输出电压的调节,这是由于控制器以负输出电压为参考电压。只需精心选取少量组件的值,并稍稍改动电路,降压控制器便可在负输出降压-升压拓扑中起到双重作用。
二、LMZ14203H 电源模块应用电路
此篇主要介绍了LMZ14203H特性、应用范围、参考设计电路以及电路分析,帮助大家缩短设计时间。
LMZ14203H特性:集成屏蔽电感器、简单的印刷电路板布线、使用外部的软启动电容器和高精度使能端,可以实现灵活的启动时序控制、针对浪涌电流提供保护、输入欠压锁定和输出短路故障提供保护、结温范围-40°C至125°C、采用整块的裸露焊盘和标准引脚,更易于装配和制造、低输出电压纹波
LMZ14203H典型应用范围包括:中间总线转换到12V和24V电压轨;应用于时间受限项目;应用于空间受限/高温场合;应用于负输出电压场合
LMZ14203H内部结构框图:
图3为LMZ14203H 内部结构框图
LMZ14203H参考设计电路:
图4 为LMZ14203H参考应用电路
三、稳压电源的设计方案
可知DC-DC变换的种类分为:隔离和非隔离。输入输出隔离虽然安全系数比较高,可是隔离变压器会有漏磁和损耗等不利的缺点,从而会造成效率降低,根据本研究的要求,并没有要求输入输出隔离,所以最终决定选择的是非隔离方式,几种方案如下:
3.1 串联开关电路
占空比为D的PWM波控制开关管Q1,从而达到这样的一个效果,交替导通或截止,再经L和C滤波器在负载R上得到稳定直流输出电压Uo。本电路属于降压型电路,题目要求的30--36V 的输出电压是实现不了的。
3.2 并联开关电路
串联开关电路与并联开关电路原理很相似,但是此电路为升
- DC/DC电源模块高温失效原因分析(04-11)
- PLC电源模块维修技术实例(07-17)
- 面向高可用性系统的理想二极管和热插拔控制(04-15)
- 如何平衡电源模块中低电磁干扰的设计(02-20)
- 轻松了解通过PCB设计解决电源模块散热问题的玄机(07-20)
- 采用DC-DC模块的无人机电源解决方案(02-18)