射频电路和数字电路有何区别?射频电缆和双绞线的联系与区别?
提高,这意味着仪器的处理性能也会不断提高。因此,由于CPU厂商不断更新处理器技术,基于PC的仪器的测量速度也不断加快。例如,十年前需要50 ms的频谱测量现在只需5 ms即可完成。
除了CPU,现代射频仪器也逐渐集成了现代软件无线电的核心技术——FPGA。FPGA应用于射频仪器已经有十多年,当今一个不断发展的趋势是让仪器的FPGA实现用户可编程。用户可编程的FPGA将仪器的作用从单一功能设备扩展为无限灵活的闭环控制系统。
随着当今支持FPGA的仪器的出现,工程师可以将FPGA的实时控制功能与对于时间要求极其严格的测试功能相结合。例如,在需要通过数字接口实现设备控制的测试应用中,支持FPGA的仪器可以同步执行数字设备控制与射频测量。基于用户可编程的FPGA提供的新测试方法,工程师们的测试时间提高了100倍。
支持FPGA的工具也推动了FPGA编程的巨大创新。尽管一些工程师多年来一直使用VHDL等硬件描述语言,但FPGA编程的复杂性为该技术的广泛应用带来重重障碍。
软件无线电推动FPGA的应用
今天,RF仪器中类似于软件无线电的架构元素已经模糊了传统仪器和嵌入式平台之间的界限。定义仪器的特性,如用户可编程的FPGA,使得RF仪器日趋广泛地用于嵌入式应用中。
二十年前,将价值上百万美元的RF信号发生器和射频信号分析仪组装在一起来开发雷达系统的原型似乎令人难以想象。这种系统不仅成本高昂、规模巨大,而且复杂的编程体验也令工程师望而生畏,不愿使用无线通信设备之类的仪器。
然而现在,PXI等体积更小巧、功能更强大的基于PC的仪器平台成为了电子嵌入式系统的理想原型解决方案。基于PC的仪器不仅能满足嵌入式系统的尺寸和成本要求,同时也为工程师提供了一种可以重新配置RF仪器,从而实现RF仪器的广泛应用的良好软件体验。所以,工程师开始使用射频信号发生器和分析仪来设计雷达、信道仿真器、GPS记录仪和DPD硬件等嵌入式系统。
使用软件来充分定义和定制RF仪器行为的这一能力已经成为解决下一代测试挑战的关键。因此,未来的RF仪器架构将越来越难与软件无线电架构区分开来。
- 基于自适应技术的CPU供电电路系统(10-27)
- 嵌入式CPU卡在医用便携式监护仪中的应用及设计(09-23)
- 四核Vs八核移动处理器 性能差异并不大(03-10)
- 可编程逻辑控制器(PLC)基本操作及功能简介(03-07)
- 评测:采用AMD APU平台的联想启天M5800——均衡+全能(02-17)
- 智能手机省电秘诀:看如何从设计源头来降低功耗(02-14)