微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 用卷积神经网络检测脸部关键点的教程(一)

用卷积神经网络检测脸部关键点的教程(一)

时间:02-13 来源:eetrend 点击:

在相对较快的GPU上训练,我们能够在1分钟之内完成400个epoch的训练。注意测试损失会一直减小。(如果你训练得足够长时间,它将会有很小很小的改进)

现在我们有了一个很好的结果了么?我们看到测试误差是0.0032,和竞赛基准比试一下。记住我们将目标除以了48以将其缩放到-1到1之间,也就是说,要是想计算均方误差和排行榜的结果比较,必须把我们上面得到的0.003255还原到原来的尺度。
>>> import numpy as np
>>> np.sqrt(0.003255) * 48
2.7385251505144153

这个值应该可以代表我们的成绩了。当然,这得假设测试集合的数据和训练集合的数据符合相同的分布,但事实却并非如此。

测试网络

我们刚刚训练的net1对象已经保存了训练时打印在控制台桌面中的记录,我们可以获取这个记录通过train_history_相关属性,让我们画出这两个曲线。
train_loss = np.array([i["train_loss"] for i in net1.train_history_])
valid_loss = np.array([i["valid_loss"] for i in net1.train_history_])
pyplot.plot(train_loss, linewidth=3, label="train")
pyplot.plot(valid_loss, linewidth=3, label="valid")
pyplot.grid()
pyplot.legend()
pyplot.xlabel("epoch")
pyplot.ylabel("loss")
pyplot.ylim(1e-3, 1e-2)
pyplot.yscale("log")
pyplot.show()

我们能够看到我们的网络过拟合了,但是结果还不错。事实上,我们找不到验证错误开始上升的点,所以那种通常用来避免过拟合的early stopping方法在现在还没有什么用处。注意我们没有采用任何正则化手段,除了选择节点比较少的隐层——这可以让过拟合保持在可控范围内。

那么网络的预测结果是什么样的呢?让我们选择一些样例来看一看。
def plot_sample(x, y, axis):
img = x.reshape(96, 96)
axis.imshow(img, cmap='gray')
axis.scatter(y[0::2] * 48 + 48, y[1::2] * 48 + 48, marker='x', s=10)

X, _ = load(test=True)
y_pred = net1.predict(X)

fig = pyplot.figure(figsize=(6, 6))
fig.subplots_adjust(
left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)

for i in range(16):
ax = fig.add_subplot(4, 4, i + 1, xticks=[], yticks=[])
plot_sample(X[i], y_pred[i], ax)

pyplot.show()

第一个模型预测的结果(从测试集抽出了16个样例)
预测结果看起来还不错,但是有点时候还是有一点偏。让我们试着做的更好一些。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top