微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > MEMS惯性测量单元(IMU)/陀螺仪对准基础

MEMS惯性测量单元(IMU)/陀螺仪对准基础

时间:10-05 来源:网络整理 点击:

8中,然后求解M32。注意偏置误差(bE)是如何从公式中消除的。

  

  此公式假设偏置误差在两次测量中保持不变,这并不是一个符合实际的期望,不同测量之间可能存在偏差(温度、时间和噪声),对此应有清醒的认识。当在稳定的温度条件下连续进行测量时,噪声常常是此过程中需要管控的关键误差。在陀螺仪测量中,可接受的噪声水平取决于对准精度目标(ΨT)和测定过程中各轴上的旋转速率(ωTR)。惯性条件保持不变时,一种常用的降噪技术是对陀螺仪数据求均值。利用Allan方差曲线这个工具可以了解可重复性(噪声)与均值时间之间的权衡关系。

  示例3

  如果特性测定期间的旋转速率为100?/s,对准精度目标为0.1度,噪声(rms)必须比对准误差目标低10倍,那么为了实现这些目标,我们需要对ADIS16485的输出求多长时间的均值?

  求解

  使用陀螺仪与输入之间的一般响应(在测试平台上旋转),下面的计算表明:各陀螺仪的总噪声(rms)必须低于62?/小时。

  

  图6通过一个例子说明了如何使用此IMU的Allan方差曲线来选择均值时间以满足上述要求。本例中,0.1秒的均值时间可满足62?/小时的可重复性目标,还有一些裕量。

  

  图6:ADIS16485 Allan方差曲线。

  注意,这种方法仅针对传感器本身的噪声。若测试平台有振动,会增加陀螺仪测量的噪声,则可能需要额外的考虑和滤波。

  简化对准过程的技巧和窍门

  开发一个具有必要的精度和环境控制温度的三轴惯性测试系统,通常需要在固定设备和工程开发资源方面投入巨资。对于那些正在开发第一代或第二代系统,在开发过程中有很多问题需要回答的公司,可能没有此类资源或时间。这就产生了简化解决方案的需求,通过谨慎选择IMU并利用仪器或应用中的自然运动可以实现简化。

  例如,有时候使用角度可能比使用角速率测量来得更方便。公式31是公式11、公式12和公式13合并的结果,它用相对于全局坐标系的角度(θXω, θYω, θZω)和陀螺仪输出的积分(θXG, θYG, θZG)来代表系统行为(M):

  关于器件选择,轴到轴对准误差是一个需要考虑的重要参数,因为当它低于轴到封装对准误差参数时,将有助于降低与电子对准相关的惯性测试配置(公式16)的复杂度。轴到封装对准误差参数描述的是陀螺仪相对于外部机械基准的方位,而轴到轴对准误差参数描述的是各陀螺仪相对于另外两个陀螺仪的方位。多数情况下,MEMS IMU中三个陀螺仪的理想方位是彼此成90?,因此轴到轴对准误差与此行为的另一个常见参数(跨轴灵敏度)相关。利用公式7作为参考,轴到轴对准误差代表这三个关系的最大值:

  

  图7:轴到轴对准误差。

  制定电子对准流程时,轴到轴对准误差参数确定的是假设传感器完全正交对准时的误差。使用完全正交这一假设条件,仅旋转两轴便可对准所有三轴。例如,绕y轴和z轴旋转便可直接观测到M12 、M13、M22、M23、M32和M33。假设完全正交对准并应用三角函数,便可利用以上6个元素和以下关系式计算其他三个元素(M11、M21和M31):

  

  以上等式可将系统模型更新如下,其中M矩阵中的所有9个元素用从y轴和z轴旋转得来的6个元素表示。

  结论

  惯性MEMS技术在过去几年已经取得长足进步,为系统开发商在复杂权衡范围内提供了广泛的选项,包括尺寸、功耗、单位成本、集成成本和性能。对于首次利用MEMS IMU开发运动控制系统的人员,为了选择合适的IMU并准备利用该IMU来支持关键系统需求,会有很多东西需要了解。对准精度对性能、成本和计划方面的关键目标会有重大影响,必须予以认真考虑。在概念和架构设计阶段,即使很简单的分析工具也能帮助找出潜在的风险,因此应当趁着还有时间影响器件选择、机械设计、安装后校准(电子对准)、初步成本预测和关键计划节点的时候,多做些工作。更进一步说,识别MEMS IMU的关键指标和机会,用系统中提供的自然运动代替三轴惯性测试设备以最大限度地发挥系统的价值(性能和总开发成本),将是非常有益的。 

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top