微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > UHF RFID标签芯片模拟射频前端设计

UHF RFID标签芯片模拟射频前端设计

时间:03-27 来源: 点击:

。当充电到电容C2上的电压VE大于整形电路第一个反相器中晶体管MN6的阈值电压时,晶体管MN6导通,输出电压VF翻转为低电平。再经过反相,在整形电路的输出端可以得到复位信号的上升沿。充电完成后,紧接着C2通过晶体管MN;放电,通常放电速度比充电速度更慢。当放电到C2上的电压小于晶体管MN6的阈值电压,晶体管MN6截止,输出电压VF翻转为高电平,此时在整形电路的输出端得到复位信号的下降沿。

  2.4 解调电路

  对于超高频RFID标签芯片的ASK解调电路,通常采用包络检波方式。解调电路的框图如图5所示。按照18000-6C/B标准,电路输入信号的包络频率范围为40~160 kHz,脉宽失真小于10%。包络检波器由一级Dickson电路和R2,C3组成的低通滤波器组成。产生的包络信号先送入比较器的负端,再通过低通滤波为比较器提供参考电压。比较器采用迟滞比较器,具有良好噪声抑制性能、高动态范围等特点。采用两级反相器目的是将输出电压进行整形,产生规则的方波信号。

\

 随着RFID标签距离阅读器远近不同,输入的射频信号幅度可能在几百mV到几V之间变化,包络检波器输出的直流电平会有很大变化。在包络检波器输出端并联一个泄流电路,其作用是在输入信号过大时对后端比较电路起到泄流稳压的保护作用,从而避免后端电路工作失常。为了降低功耗,泄流电路在输入电平较小时需保持关断状态。

  2.5 调制电路

  根据标准要求采用反向散射的调制方法,通过改变芯片输入阻抗来改变芯片与天线间的反射系数,从而实现ASK调制。天线阻抗与芯片输入阻抗在 "0"状态下共轭匹配,而在"1"状态下存在一定失配。图6为调制电路框图,电容C1并联在天线两端,晶体管M1等效为一个开关,通过控制开关的开启,决定了电容是否接入芯片输入端,从而改变了芯片的输入阻抗,最终实现ASK调制。

\

2.6 时钟产生电路

  时钟产生电路采用环形振荡器电路,并加入电压和温度补偿电路,保证在不同的工作电压和温度下,频率偏移在规定的范围(±1%)内,电路框图如图 7所示。电压补偿主要依靠一个电压基准电路产生一个基准电压源,提供给五级环形振荡器作为工作电压,这样就能保证在输入电压在O.9~1.1 V变化范围内,最大频偏能满足要求。环形振荡器的振荡频率呈正温度系数特性,故需加入一个负温度系数的补偿电路,并优化五级环形振荡器的有源器件的宽长比,使其温度系数恰与自身的温度系数互补,使时钟产生电路输出频率稳定。

  3 测试结果

  基于Cadence Spectre设计仿真平台和TSMC0.18μm CMOS混合信号工艺,对UHF RFID标签芯片模拟射频前端进行设计和仿真,并通过MPW项目流片实现。模拟射频前端芯片不含测试焊盘的核心电路的芯片面积为490μm×420μm,图8是芯片实物照片。

\

使用Agilent E4432B信号源对模拟射频前端进行激励,输入载频为915 MHz的ASK调制信号。图9为整流电路输出波形,并测得稳压电路高、低输出电压分别稳定在1.O V和1.8 V。图10解调电路的输出波形,可看出该电路能正确解调40~160 kHz的ASK调制信号。图11(a)是上电复位电路输出波形,脉冲宽度大于30μs。时钟产生电路输出如图11(b)所示,可看出波形近似方波且占空比约50%。使用AgilentN5230A矢量网络分析仪给芯片输入频率为915 MHz,功率-5 dBm的测试信号,测得"O"和"1"两种状态下标签反射系数相差12%。

\

\

4 结语

  这里设计了符合ISO18000-6C/B标准的UHFRFID无源标签芯片模拟射频前端。模拟射频前端包括整流器、稳压电路、调制解调器、时钟电路和上电复位电路等模块。采用TSMCO.18μm CMOS混合信号工艺设计、仿真、流片,其核心面积为490μm×420 μm。测试结果表明,该模拟射频前端各模块性能能够较好地满足UHF RFID标签芯片的系统指标要求。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top