新型大功率模块助你在日益火爆的充电桩抢占先机
新能源汽车随着相关技术的日趋成熟而越来越受欢 迎,同时其清洁环保的特点已经越来越受到大众的喜爱。只是受制于动力系统(电池等)的限制,新能源汽车的续航与动力舱的体积一直为人诟病。由此可见,新能源汽车优势非常明显,但弱点也比较突出,因此如何才能充分利用这种新技术,使之不鸡肋呢?增加配套基础设施(像燃料动力车一样,增加"加油站"即充电桩/ 充电机)毫无疑问成为推动电动车发展的最强助力。这个配套基础设施的潜力有多大?可以这么说,有路的地方就有机会!由此,我们可以看到大量的企业信心满满地杀入这个市场。
那么问题来了,充电桩/充电机与现在沸沸扬扬的互联网+不同,相关的企业是需要拿出具体的产品出来的。因此很多对这个市场跃跃欲试的企业会面临一个严峻的问题,如何才能更快地推出相关的产品以加入到市场的角逐中去呢?我们都知道,充电桩其实就可以理解成一个大的电源,它实现了交流工电到直流高压的变换。其 中,除了软核之外,最为核心的就是功率器件了。功率器件无外乎两个选择,一个是用单管,一个是用模块;使用单管,或许成本会略微降低,但是散热,布板等都需要特别留意,在大电流的应用场合尤甚,此时功率模块当仁不让地成为最优的选择。
让我们再把眼光投向充电桩本身,让我们抽象出整个产品的拓扑。由于小功率桩与早期通讯电源的类似性,很多客户直接会用8kw左右的通讯电源做成模块,最后 组成更大功率段的桩。这种电源由于功率数相对还是比较大的,同时为了提高其电能利用率,降低对电网系统的干扰,一般他们都会采用三相Vienna整流 /PFC环节。
交流输入之后使用的是典型的三相Vienna PFC整流结构,经过可控整流之后,电压可能会升到》750V左右,然后再通过DC-DC单元提供可控的电压和电流输出。由于其应用的特殊性,现在较为常见的有LLC谐振结构。早期由于MOS具有较好的关断特性,因此尤其适合ZVS技术相关的结构中,而早期的IGBT由于工艺限制等,开关频率也做不 到很高(导通损耗与开关损耗等),因此之前的LLC大多是用CoolMOS来做。现在infineon新推出了H5代功率管,则能够适合高频开关的需求:
我们都知道,IGBT相对MOS输出电容更小,开通损耗会更小,在一定占空比的情况下会更为有利,CoolMOS尽管也可以做到较小的开通损耗,但是成本相对会增加很多。
Vincotech则充分利用了H5的高开关频率的特性,为充电桩的DC-DC部分专门定制了一款由H5模块构成的全桥电路,非常适合于充电桩的DC- DC输出部分。同时,vincotech也充分利用其在功率电子市场的雄厚技术与经验积累,为客户带来了杂散电感更低,更容易设计的功率模块。
如下图所示,Vincotech推出了10-FY074PA100SM-L583F08产品,该产品是一款适于高效H桥拓扑的模块,该模块高度为 12mm,采用的是射极开路的形式,设计更为灵活。此外,该产品还贴心地为客户集成了电容器和热偶。内部器件如上所述,选用的是Infineon的高速 H5 IGBT与超快二极管的组合,同时考虑到该产品的电流数较大,vincotech还是沿用了其擅长的低杂散电感的设计特长,让模块相关的杂散电感整体降低 了一个档次,大大减少了用户工程师的设计与调试时间。目前世强已经代理了Vincotech 全线产品。
该产品内部选用的IGBT H5的额定电压为650V,持续工作电流(极限结温,散热器温度高达80摄氏度的极限温度下)能够保持在79A,而其可重复的通过峰值电流能力则能够达到 300A;反并联二极管则能够重复耐受650V高压,长时间的通流能力为52A,可重复的峰值通流能力也达到了120A。考虑到输出电压有可能会超过 650V,因此我们可以通过模块的串接,非常方便就能实现高压快速H桥LLC电路(或是其它形式)。目前,世强支持Vincotech 全线产品供货。
关于世强
世强先进成立于1993年,是包括安华高、瑞萨电子、AARONIA AG、Silicon Labs、Rogers、Melexis、英飞凌、Acam、Alliance、Littelfuse、EPSON、Vincotech、Wima、新电元、SMI、TT Electronics理光微电子、是德等在内的全球知名半导体企业及测试测量仪器公司在大中国区的重要分销商,同时也是众多电子制造和研发企业的重要供应商。产品业务除了覆盖传统的工业、通信、消费和汽车电子领域,更为新兴的物联网、车联网、可穿戴设备、智能移动终端等市场带来更多前沿技术和创新产品。
作为技术驱动型分销企业 ,世强还拥有成熟的技术支持团队和系统的服务流程,根据需求向客户提供新产品推介、快速样品、应用咨询、方案及软件设计、开发环境
- 家电智能功率模块单驱动电源方案(10-07)
- IGBT 驱动器提供可靠保护(04-14)
- 各种IGBT 式感应加热电源性能比较(07-20)
- IGBT电力电子装置的应用详解(11-04)
- IGBT及其子器件的四种失效模式比较(06-13)
- IGBT安全工作区的物理概念和超安全工作区工作的失效机理(06-21)