一起来看“万能”石墨烯电池的进击
10月29日,来自英国曼彻斯特大学的安德烈·盖姆(Andre Geim)在中国青岛举办的"2015中国国际石墨烯创新大会"上受到明星一般的欢迎。他的名字,如今与"万能材料"石墨烯一样出名。
作为2010年诺贝尔物理奖获得者、石墨烯的第一位发现者,当他从一家中国企业手中接过一款创新产品——石墨烯护腰的时候,他原本略显严肃的嘴角上,露出一丝不明显但又意味深长的微笑。
作为一种由碳原子构成的单层片状结构的新材料,石墨烯可以说是目前世界上最薄也是最坚硬的材料,具有超薄、超轻、超高强度、超强导电性、优异的室温导热和透光性,结构也非常稳定。它不仅有望使锂电池功效倍增,更有望替代硅,制造未来新一代超级计算机。
从2004年在实验室中被发现,到2010年发现者被授予诺贝尔奖,到现在石墨烯产业遍地开花,这种代表下一个时代的新型"万能材料",其应用前景不可限量。但当前其应用局面鱼龙混杂,一方面是跟真正的石墨烯薄膜关系并不十分密切的石墨矿资源受到热捧,一方面是纯粹炒作石墨烯概念的产品层出不穷。
与国际上往往由科技巨头企业主导、从研发到产业化的链条十分通畅的状态相比,中国面临着石墨烯研发仍然局限于高校和科研院所、与实际应用脱节的困境。中国的石墨烯产业何去何从,不仅需要国家层面的引导,更需要足够的时间和足够的耐心。
"万能材料"
10月23日,中国国家主席习近平参观了盖姆所在的曼彻斯特大学国家石墨烯研究院。当天上午,中国企业华为对外宣布与曼彻斯特大学进行共同开发ICT领域的下一代高性能技术的合作研究,研究如何将石墨烯领域的突破性成果应用于消费电子产品和移动通信设备。
华为公司创始人任正非,此前多次谈到石墨烯,提出"这个时代将来最大的颠覆是石墨烯时代将颠覆硅时代"的想法,并认为未来10年至20年内将爆发一场技术革命。
石墨烯是由单层碳原子层构成的蜂窝状晶格二维原子晶体,理论厚度仅为0.34纳米,具有优良的导热性能、力学性能、较高的电子迁移率、较高的比表面积和量子霍尔效应等性质。
正是由于这些特殊而优异的物化性能,使得石墨烯在微电子、物理、能源材料、化学、生物医药等领域体现出了潜在的应用前景。2004年,英国曼彻斯特大学的安德烈·盖姆和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)从石墨薄片中剥离出了石墨烯,他们二人因此荣获2010年诺贝尔物理学奖。
虽然他们使用的方法非常原始,但是这一发现的伟大之处,在于打破了国际物理学界长达半个世纪的一个结论——无法得到稳定的石墨烯。实际上,就在发表盖姆那篇著名论文的同一期《自然》杂志上,也发表了中国学者张远波与合作者的一篇关于石墨烯的文章,但是诺贝尔奖并未青睐后者。这在当时,被看做国内学者距离诺贝尔最近的一次。
张远波与合作者以及盖姆小组在2005年的工作,引领了全球对石墨烯的研究。此后,张远波的工作主要集中在石墨烯的制备、电学输运特性、扫描隧道能谱,以及远红外能谱的测量,一直活跃在这个领域的前沿。 张远波对财新记者说,从他们两个小组发现石墨烯新的物理现象后,这个领域就呈现爆炸性的增长,现在还没有饱和的迹象。
公众每天都会用到的智能手机,最关键的一部分就是有一块既能导电又非常透明的触摸屏。石墨烯恰好就具备这样的特性,让它可以做成这样的触摸屏。而且石墨烯的强度和柔韧性,比目前的透明电极材料氧化铟锡(ITO)要更好。
早在2010年,韩国成均馆大学和三星公司的研究人员,就制造出由多层石墨烯和聚酯片基底组成的透明可弯曲显示屏。当时,论文通讯作者、成均馆大学教授洪秉熙就提出,他们的方法可用于制造基于石墨烯的太阳能电池、触摸传感器和平板显示器。但他当时也承认,大规模制造和商业化还为时尚早。
不过,五年来的发展,也出乎他的意料。在10月底在青岛召开的石墨烯创新大会上,洪秉熙介绍说,石墨烯透明电极已经广泛地应用于各种各样的柔性光电器件,包括触摸屏传感器、有机发光二极管(OLED)和有机光伏器件。
由于石墨烯具有优异的导热性能和力学性能,还在传感器、聚合物纳米复合材料、光电功能材料、药物控制释放等领域表现出众多潜在的应用前景。
石墨烯拥有较大的比表面积,使其具备了制作高灵敏度传感器的条件,一旦气体被吸附于石墨烯表面,其表面电阻就会出现变化,然后结合电传感检测器,就可以让石墨烯成为一种优异的气体传感器。
石墨烯的气体吸附特性,也让其成为新型储氢材料,可
- 石墨烯电池引起热议:或是“炒作”?(02-17)
- 是什么制约了石墨烯电池产业化市场的应用?(02-11)
- 世界首款石墨烯基锂离子电池产品竟遭质疑?(07-16)
- 不容错过!2015年十大前沿电池科技盘点(02-26)
- 超级电容、锂电池和石墨烯电池对比分析(10-28)
- 石墨烯电池的优缺点(11-05)