放大器和视频滤波器电路板设计技巧
摘要
在任何一个设计人员的工具箱里,集成电路放大器都是最基本的构件模块之一,它是目前市面上最全能的产品之一。放大器具有多项功能,如驱动ADC,驱动多个视频负载,作为视频或其它类型滤波器,驱动高速仪器信号等等。它们还可以作为振荡器,不过,在某些实际应用中却会成为一个问题,因为放大器应该只在设计人员需要的时候才振荡。而如果电路板设计不正确,放大器却会自行其是,随意振荡。那么,设计人员应该怎么做才能避免这种有害的振荡呢?试回忆一下我们以前在电子课程里学过的知识,即振荡与电容、电感和反馈相关。因此,关键在于精心设计电路板,确保减少或消除任何无关的电容性和电感性反馈路径。本文将给出13条版图设计指南。
在任何一个设计人员的工具箱里,集成电路放大器都是最基本的构件模块之一,它也是目前市面上最全能的产品之一。放大器具有多项功能,比如驱动ADC,驱动多个视频负载,作为视频或其他类型滤波器而工作,驱动高速仪器信号等等。它们还可以作为振荡器,不过,实际中这种方案的确存在一些问题,因为放大器应该只在设计人员需要的时候才振荡。而如果电路板设计不正确,放大器却会自行其是,随意振荡。那么,设计人员应该怎么做才能避免这种有害的振荡呢?试回忆一下我们以前在电子课程里学过的知识,即振荡与电容、电感和反馈相关。因此,关键在于精心设计电路板,确保减少或消除任何无关的电容性和电感性反馈路径。对于较高速的放大器(大于50MHz),这尤其重要。
电路板、负载(尤其是电容性负载),以及/或版图设计,都会带来无形的电容和电感。此外,流入电路板各处旁路电容的电流可能产生不同的路径,导致失真。因此,有些号称减少失真的技术其实是适得其反,与避免振荡的设计规则背道而驰。(设计人员的工作从来非易事,的确如此)那么,在进行放大器或视频滤波器的版图设计时,为了保持全局平衡,减少失真和振荡,需要考虑到哪些事项呢?
首先看看振荡器,在利用放大器直接驱动电容性负载时,负载会与放大器的输出阻抗会产生相位滞后,而相位滞后将导致脉冲尖峰或振荡。有些放大器能够直接驱动电容性负载,但有些放大器则需要在放大器的输出端增加一个小串联电阻(Rs)来提高放大器的稳定性和建立时间(settling time)性能。
图1
图2给出了驱动传输电缆(如同轴电缆)的典型电路配置图。电阻Rs和RL应该等于电缆的特征阻抗(Zo),而电容C应该可被用来在更大的频率范围对电缆进行匹配,以对随频率提高而增加的放大器输出阻抗进行补偿。
图2:驱动电缆或传输线的典型电路图
高频放大器很容易受电路布局所致失真的影响,即使是低频放大器,比如音频放大器,也具有非常严格的失真要求。失真(THD)是音频质量的主要指标,因此,减少版图引起的失真十分关键。
失真的一个重要原因是PCB中的接地电流效应。这种效应来自于流入每个电源和各电源旁路电容的电流,该电流与路径的电导率成比例。各个不同路径都存在不同的传导性,从而导致失真。因为即使PCB本身的材料是线性的,电路板的行为也会表现出“空间非线性”特性。这是因为旁路电容分布在电路板的不同位置,导致接地电流沿不同的路径流入各个旁路电容。路径不同导致接地电流流经的接地电阻输入一端的电压受到影响,而另一端则不会。结果是输入信号电压被不均衡得调整,导致非线性的产生。在这种情况下,如果一个极性被调节,而另一个却没有,就会造成二次谐波失真。换一句话说,如果只有正弦波的一个极性被调节,结果将不再是正弦波,这种失真的影响是显而易见的。为了避免失真,设计人员可以使用共有接地点并在输出端采用接地旁路电容。
高频电路板版图设计的主要规则是使高频旁路电容尽可能靠近封装的电源引脚。不过,实验显示,稍微延长高频旁路电容的连接走线可以提高平坦度和差分增益,从而减少失真。设计规则当然有益,而设计人员的实验经验也十分有用,可以确保规则与实际的一致性。
在电路板上设计视频滤波驱动器时,很重要的一点是,应该把输入耦合电容和端接电阻靠近输入引脚放置,以获得最佳信号完整性。图3所示为视频滤波器/驱动器的一种典型AC耦合输入配置。在这种配置中,采用0.1uF陶瓷电容来对输入信号进行AC耦合。如果输入信号不低于接地电位,钳位电路不激活;但若输入信号低于接地电位,则钳位电路会把同步端最低电压设置为恰好低于接地电位。钳位电路设置的输入电平,结合内部DC偏移量,将使输出信号保持在可接受的范围之内,大约在250mV左右。这种钳位特性还允许参考电平为地的DAC输出直接驱动直流耦合输入。
- 自适应RF前馈放大器的设计(03-26)
- GPS接收机的低噪声放大器设计(04-28)
- 带宽为100MHZ的超宽带DC放大器(05-16)
- 射频功率放大器实时检测的实现(03-29)
- 基于FLM3135-18F的S波段微波功率放大器设计(01-10)
- 低噪声放大器的设计与仿真(09-14)