微波EDA网,见证研发工程师的成长! 2025濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柟缁㈠枟閸庡顭块懜闈涘缂佺嫏鍥х閻庢稒蓱鐏忣厼霉濠婂懎浜惧ǎ鍥э躬婵″爼宕熼鐐差瀴闂備礁鎲¢悷銉ф崲濮椻偓瀵鏁愭径濠勵吅闂佹寧绻傚Λ顓炍涢崟顓犵<闁绘劦鍓欓崝銈嗙箾绾绡€鐎殿喖顭烽幃銏ゅ川婵犲嫮肖闂備礁鎲¢幐鍡涘川椤旂瓔鍟呯紓鍌氬€搁崐鐑芥嚄閼搁潧鍨旀い鎾卞灩閸ㄥ倿鏌涢锝嗙闁藉啰鍠栭弻鏇熺箾閻愵剚鐝曢梺绋款儏濡繈寮诲☉姘勃闁告挆鈧Σ鍫濐渻閵堝懘鐛滈柟鍑ゆ嫹04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝曢梻浣藉Г閿氭い锔诲枤缁辨棃寮撮姀鈾€鎷绘繛杈剧秬濞咃絿鏁☉銏$厱闁哄啠鍋撴繛鑼枛閻涱噣寮介褎鏅濋梺闈涚墕濞诧絿绮径濠庢富闁靛牆妫涙晶閬嶆煕鐎n剙浠遍柟顕嗙節婵$兘鍩¢崒婊冨箺闂備礁鎼ú銊╁磻濞戙垹鐒垫い鎺嗗亾婵犫偓闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗22闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝栭梻渚€鈧偛鑻晶鎵磼椤曞棛鍒伴摶鏍归敐鍫燁仩妞ゆ梹娲熷娲偡閹殿喗鎲奸梺鑽ゅ枂閸庣敻骞冨鈧崺锟犲礃椤忓棴绱查梻浣虹帛閻熴垽宕戦幘缁樼厱闁靛ǹ鍎抽崺锝団偓娈垮枛椤攱淇婇幖浣哥厸闁稿本鐭花浠嬫⒒娴e懙褰掑嫉椤掑倻鐭欓柟杈惧瘜閺佸倿鏌ㄩ悤鍌涘 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閻樻爠鍥ㄧ厱閻忕偛澧介悡顖氼熆鐟欏嫭绀€闁宠鍨块、娆戠磼閹惧墎绐楅梻浣告啞椤棝宕橀敐鍡欌偓娲倵楠炲灝鍔氭繛鑼█瀹曟垿骞橀懜闈涙瀭闂佸憡娲﹂崜娑㈡晬濞戙垺鈷戦柛娑樷看濞堟洖鈹戦悙璇ц含闁诡喕鍗抽、姘跺焵椤掆偓閻g兘宕奸弴銊︽櫌婵犮垼娉涢鍡椻枍鐏炶В鏀介柣妯虹仛閺嗏晛鈹戦鑺ュ唉妤犵偛锕ュ鍕箛椤掑偊绱遍梻浣筋潐瀹曟﹢顢氳閺屻劑濡堕崱鏇犵畾闂侀潧鐗嗙€氼垶宕楀畝鍕厱婵炲棗绻戦ˉ銏℃叏婵犲懏顏犵紒杈ㄥ笒铻i柤濮愬€ゅΣ顒勬⒒娴e懙褰掓晝閵堝拑鑰块梺顒€绉撮悞鍨亜閹哄秷鍏岄柛鐔哥叀閺岀喖宕欓妶鍡楊伓婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻鐔兼⒒鐎靛壊妲紒鎯у⒔缁垳鎹㈠☉銏犵婵炲棗绻掓禒楣冩⒑缁嬫鍎嶉柛濠冪箞瀵寮撮悢铏诡啎閻熸粌绉瑰畷顖烆敃閿旇棄鈧泛鈹戦悩鍙夊闁抽攱鍨块弻鐔虹矙閹稿孩宕崇紓浣哄У閹稿濡甸崟顖涙櫆閻犲洩灏欐禒顖滅磽娓氬洤鏋涙い顓犲厴閵嗕礁鈽夐姀鈥斥偓鐑芥倵閻㈢櫥鐟邦嚕閹惰姤鈷掑ù锝堟鐢稒绻涢崣澶屽⒌鐎规洘鍔欏畷鐑筋敇濞戞ü澹曞┑顔结缚閸嬫挾鈧熬鎷�
首页 > 微波射频 > 微波器件设计 > 基于FLM3135-18F的S波段微波功率放大器设计

基于FLM3135-18F的S波段微波功率放大器设计

时间:01-10 来源:中电网 点击:

1 引言

S波段微波功率放大器是雷达发射机、无线通信、测量设备等系统的关键元件。微波功放的增益、输出功率、非线性等参数直接影响整个系统性能。S波段微波功率放大器研制的核心是大信号工作条件下功率放大器的输入输出宽带匹配电路的设计。大功率功率放大器的输出阻抗很低,一般在5 Ω以下,因而匹配电路的阻抗变换比很大,导致直接设计宽带匹配电路困难。同时,功放的交调、谐波等非线性也与其匹配电路有关,电路设计时必须综合考虑。

微波功率放大器关键在于输入输出匹配电路的设计。其功放匹配电路的设计可以采用近似线性的动态阻抗匹配、大信号S参数方法仿真,也可用谐波平衡法等非线性方法仿真。本文介绍了一种基于具有阻抗内匹配性质的场效应管设计的S波段功放,无需设计匹配电路,减少了优化设计的功放模块,因此缩短了研发周期,降低了设计成本,提高了技术指标。

2功率放大器系统设计

2.1 系统组成及原理

功率放大器系统的设计指标决定了其组成结构,设计线性功放设计的重点在于交调。分析三阶交调特性,忽略放大器的记忆性,其传输特性可用三阶泰勒公式近似表示为:

式中:Vout(t)为功放的输出电压,Vin(t)为功放的输入电压。当输人为双音信号,即Vin=A1cosω1t+A2cosω2t时,除了放大信号的频率分量ω1和ω2,放大器还产生落在频带内三阶交调分量2ω1-ω2和2ω2-ω1,令A1=A2=4,代入式(1),可得:

式中:IM3即三阶交调。三阶交调分量一般无法用滤波器滤除,必须选择合适的放大器和设计适当的匹配电路。由式(2)可以看出,功放的输人功率增加3dB,而三阶交调则回退6 dB。

选用FLM3135-18F单级增益为10 dB~15 dB,为了满足指标所提出的25 dB,必须级联放大器。级联放大器的驱动级对末级输出的三阶交调由下式计算可得:

式中:dIM3是驱动放大器的IM3引人的功放输出IM3的变化量;IM3(driver)和IM3(final)分别表示驱动放大器和末级放大器的IM3(dBc)。

因此,由式(3)可得:

2.2 FLM3135-18F简介

砷化镓FET不仅用于小信号放大,还可用于功率放大器,其工作频率可扩展至毫米波段,组合多个单一器件实现较大的输出功率。确定FET的输出功率容量取决于3个因素:漏-栅击穿电压,最大沟道电流和热特性。要得到大的输出功率除了上述3个因素外,还应避免引入阻性和容性参量,增大栅宽可任意增加沟道电流,但增大栅宽将增大许多寄生参量,特别是增加栅源电容和栅电阻,这样增益将会随栅宽增大而减少,因此,功率FET的功率增益较低,实际工作的FET功率放大器在进入饱以及1 dB起,增益则更低。另外漏极串联电阻和源极电感的存在均使功率增益下降。

FLM3135-18F是FUJITS公司生产的工作频带为3.1 GHz~3.5 GHz的微波场效应管,内部集成有

匹配的输入输出阻抗网络。在50 Ω系统的标准通信频带内可产生较理想的功率和增益。LM3135-18F的基本性能参数如表1所列。

2.3 第一级驱动放大器的设计

S波段FET的功率增益和集成功率放大器的增益一般为8 dB~12 dB,为满足设计指标的输出功率要求,末级功放需加前级驱动放大。驱动放大器不仅要有足够的带宽、增益和输出功率,同时还要有足够高的线性度不至于对系统的交调、谐波产生影响。由式(4)可知,为使驱动级对总体的交调指标影响小于1 dB,在输出回退6 dB的测试条件下,IM3应小于-53 dBc。主要采取了两种措施保证其线性度:一是驱动放大工作在A类放大器。A类放大器的线性最好,不会引入大失真,同时工作在A类放大器的功率场效应管一般输入输出阻抗Q值低,易于宽带匹配;二是选用输出功率大于所需功率的高线性GaAs功率放大管,采取冗余设计。

驱动级放大管选用Motorola公司的1 W GaAsFET。放大器的匹配电路采用微带线和高Q值陶瓷电容的半集总电路形式,仿真用S参数近似GaAsFET的特性,然后再调整输出匹配电路。实际测得输出24 dBm,驱动放大器的IM3小于-60 dBc,基本不影响系统的输出频谱。图1所示是驱动放大器的设计原理图。

2.4 末级功率放大器的设计

一般窄带内的功放管阻抗参数已知,设计功放匹配电路是整个系统设计的关键。即设计一个两端口线性无源网络,一端口负载为50 Ω,另一端口的输出阻抗和功放管的输出输入阻抗共轭匹配。阻抗匹配的结果直接影响功放的输出增益和功率。为了达到理想的匹配效果,往往采用微带线和并联电容的混合网络实现功放的匹配电路,输人输出电路拓扑类似,采用低通电路结构。但是由于高功率GaAs FET的总栅宽很大,器件的阻抗很低,导致输入输出阻抗受封装寄生电容和电感的影响,在管壳外匹配放大器电路非常困难,

灏勯涓撲笟鍩硅鏁欑▼鎺ㄨ崘

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top