微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 实时功率GaN波形监视

实时功率GaN波形监视

时间:09-28 来源:互联网 点击:

导地位时,就不能代表典型使用情况。高温工作寿命 (HTOL) 是器件开关过程中的动态测试。特定的工作条件由制造商确定,但是这些工作条件通常处于某些标称频率、电压和电流下。

  早期对于GaN针对RF放大器的使用研究发现了一个性能退化效应,此时器件能够传送的最大电流被减少为漏极电压偏置的函数。这个随电压变化的(捕获引入)效应被称为"电流崩塌"。在缓冲器和顶层捕获的负电荷导致电流崩塌或动态Rds-On增加。在施加高压时,电荷可被捕获,并且在器件接通时也许无法立即消散。已经采用了几个器件设计技巧(电场板)来减少大多数灵敏GaN FET区域中的电场强度。电场板已经表现出能够最大限度地减小RF GaN FET和开关功率GaN FET中的这种影响。

  GaN是一种压电材料。GaN器件设计人员通过添加一个晶格稍微不匹配的AIGaN缓冲层来利用这个压电效应。这样做增加了器件的应力,从而导致由自发和压电效应引起的极化场。这个二维电子气 (2DEG) 通道就是这个极化场的产物。具有2DEG通道的器件被称为高电子迁移晶体管 (HEMT)。不幸的是,在器件运行时,高外加电场也会导致有害的压电应力,从而导致另外一种形式的可能的器件退化。对于诸如GaN的新技术来说,拥有一个证明可靠性的综合性方法很重要。如需了解与TI计划相关的进一步细节,请参考Sandeep Bahl的白皮书,一个限定GaN产品的综合方法。

  为了降低成本,功率GaN目前采用的是6英寸硅基板。由于硅和GaN晶格不匹配,会出现线程脱位。这会导致晶格缺陷,并增加捕获的可能性。这些捕获的影响取决于它们的数量和在器件中的位置。捕获状态,占据或非占据,也是施加的电场和时间的一个函数。捕获充放电可能在最短100ns到最长数分钟的时间范围分布。最接近栅极区域的捕获充电和放电会调制器件的转导。所有这些效应是GaN FET的Rds-On的复杂电压和时间相关性的基础。在限定期间,工程师通常在延长的期间内对器件施加DC应力,并且定期移除这一应力,以描述单个半导体测试的情况。移除器件电压偏置,即使只有几秒钟的时间,也可以实现某些捕获放电,这样的话,就不会影响到与实际运行相关的动态Rds-On值了。

  总结

  与硅FET相比,功率GaN FET具有很多优势,比如说更低的开关损耗和更高的频率切换能力。更高的开关频率可被用来增加系统的电源转换密度。要限定一个正在使用功率GaN FET的系统,设计人员应该了解可能的退化源,并随时监视它们在温度变化时的影响。一个监视动态Rds-ON增加的简单方法就是测量时间和电压变化过程中的转换过程的效率。为了更好地了解损耗出现的位置,系统被设计成能够实时监视漏极、栅极、源极和器件电流波形。此系统能够通过它们的SOA,以1MHz以上的频率,在电压高达1000V和电流高达15A时,硬开关FET。

  捕捉和分析实时波形可以帮助我们更好地理解高频效应,比如说dv/dt、栅极驱动器电感和电路板布局布线,这些在基于GaN的设计中都很关键。监视时间和温度范围内趋势变化的实时信息能够为我们提供更好的GaN FET退化信息,并使我们对于更加智能器件和控制器产品的需求有深入的理解。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top