高性能实时应用:DSP内核+ARM核成首选
高速、高密集的数据处理需求不断挑战着DSP的性能极限,顺应这些需求,DSP未来将如何发展?日前,在与ADI工业部门市场经理陆磊的交流中,笔者找到了些许答案。
DSP 呈现五大发展趋势
陆磊认为,DSP的发展对于推动下一代产品创新有重要作用。未来,DSP将呈现出五大发展趋势。
首先是DSP的集成,越来越多的器件需要内嵌DSP功能,实现形态包括采用DSP核或是硬件加速单元。而对DSP的需求则主要来自于实时算法的复杂程度在不断增加,以及定点算法转为浮点算法的趋势。至于为什么要转向浮点算法?陆磊表示主要有三方面原因:第一,许多算法需要更多的字长和更大的动态范围,这时候浮点比定点有天生的优势。第二,产品开发和上市时间在不断缩短,客户不希望花太多的时间做定点到浮点的转化工作,直接用浮点算法实现的话,可以加快产品上市。第三个原因是浮点处理器或者浮点算法的成本在不断下降,且和定点越来越接近。
此外,越来越多的DSP都集成了ARM处理器,虽然目前看来,多数的ARM核在实现DSP的信号处理任务时,实时性能还比较有限,但集成ARM核却是未来的必然趋势。
同时,DSP也需要越来越多的接口,例如PCIe、以太网等等,这些接口在ARM处理器平台比较完善,但是DSP传统上由于更注重算法性能,在接口方面不够丰富,未来会致力于满足各种连接的要求。
第二个趋势就是低功耗。DSP并非运算性能越高越好,而是需要追求性能和功耗的平衡。例如很多应用场景中,系统的散热很重要,因此并不能一味追求主频高或多核,更多需要权衡功耗的需求。
第三个趋势是DSP对于软件IP保护和安全网络连接的需求在不断增长。特别是在物联网时代,DSP需更加重视安全特性。
第四和第五个大的趋势更多是来自于客户方面的需求,一方面客户要求产品尽快上市,另一方面则要求更高的可靠性和长期供货能力。由于产品迭代越来越快,客户需要管理的代码越来越多,与此同时,客户在系统集成、测试、调试方面也在面临较多的挑战,这都是DSP在未来的发展中需着重考虑的问题。
双SHARC+内核加Cortex-A5,提升工业和实时音频处理性能
基于上述趋势,ADI推出了新一代的SHARC处理器,主要面向工业和实时音频处理(包括工业音频和汽车、消费类音频)两大应用。相较于上一代产品,一个最显著的特点是它基于SHARC+的内核,性能比上一代SHARC核进一步提升了许多。该系列处理器共包括8款产品,ADSP-SC58x有5款,是基于双SHARC+内核和ARM Cortex-A5处理器的产品;ADSP-2158x有3款,不包括Cortex-A5,仅基于双SHARC+内核。
ADSP-SC58x和ADSP-2158x系列在高温下的功耗不到2W,使新型处理器系列在能效上达到上一代产品的5倍以上,超过最强劲竞争处理器2倍以上。在散热管理对功耗形成限制,或者无法容忍成本高、可靠性低的风扇的应用中,这一优势可以带来行业领先的数字信号处理性能,具体应用包括汽车、消费级和专业级音响、多轴电机控制、能源分布系统等。
ADSP-SC58x产品的FPU和Neon DSP扩展指令集可以应付额外的实时处理任务与管理外设,以便连接音频、工业闭环控制和工业检测应用中的时间关键型数据。这些接口包括千兆以太网接口(支持AVB和IEEE-1588)、高速USB接口、移动存储(包括SD/SDIO)、PCI Express和多种其他连接选项,可以打造出灵活而精简的系统设计。

ADSP-SC589处理器框图
ADSP-2158x系列主要面向一般需要DSP协处理器的应用,包括两个SHARC+内核和DSP加速器,同时还带有与内核相匹配的一组外设。
在软件知识产权保护日益成为业界一大安全顾虑的背景下,新一代的SHARC处理器同时还推出了ARM TrustZone安全功能以及一个板载的加密硬件加速器。对于可靠性至关重要的应用,可通过存储器奇偶校验和纠错硬件提高数据的完整性。
陆磊强调,之所以采用硬件加速单元,是因为需要支持FTI、iFFT、FIR、 IIR,电力应用时需要做谐波分析,电机控制的时候做SINC滤波,这些运算量非常大,通过硬件加速可增强整体芯片的处理能力,以FFT性能来看可以支持最高18GFLOPS的浮点运算能力,相比较5.4G SHARC+的运算能力而言,速度能效是其10倍,功耗更低。此外,在进行加密运算的时候也会消耗很大的内存,如果也是采用SHARC+的处理器核心来做的话很不经济,用硬件加速的方式既能够实现安全性,同时也保证了整体的性能没有损失。
单片处理器可应对多种应用需求
据介绍,以往客户采用SHARC搭建系统时往往需要多颗芯片,通过Linkport构建DSP阵列。但是随着半导体技术的发展,客户对
- 基于AD73360和TMS320F2812的数据采集系统设计(12-06)
- 基于紫外检测法的智能型特高压验电器系统(03-17)
- 单一DSP控制两套三相逆变器的实现(08-31)
- 基于DSP生成SVPWM在逆变电源中的应用(11-09)
- DSP的大功率开关电源的设计方案(12-01)
- DSP处理器电源方案设计(02-08)
