微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 解析:一种无线充电识别电路的设计

解析:一种无线充电识别电路的设计

时间:06-02 来源:EDN 点击:

 3 识别电路的设计

  原边电路如图1所示,其中,控制、驱动电路用U1代替;副边电路如图2所示,其中,降压、稳压电路用U2代替。副边电路采用并联补偿方式,感应电压经副边电路的整流滤波、稳压降压后输出。在副边LC并联谐振电路中,增加一个由电容和2个开关管组成的电路,单片机通过控制开关管达到改变原副线圈耦合程度的目的。原边电路采用半桥谐振电路和串联补偿方式。电压采样电路如图3所示。通过并联感应线圈的电阻,取其分量经过半波整流滤波后,输出直流回馈电压VC。取样初级侧感应线圈的电压大小变化作为保护控制电路的回馈信号,其中,

  

  

  图1 原边电路

  

  图2 副边电路

  

  图3 电压采样电路

  用LM319判定原边LC谐振电路电压是否为高电压。原边LC谐振电路电压经过电压采样电路的采样后,再经过半波整流滤波,得到一个较为平稳的采样电压。采样电压送入LM319的同相端,基准电压输入到LM319的反相端。若原边LC串联谐振电路的电压较低,则采样电压也较低,LM319输出一个低电平电压;反之,LM319输出一个高电平电压。

  原边单片机接收来自LM319的电压判别信号。原边单片机的工作时间分为识别阶段和充电阶段。在识别阶段,若单片机收到预设信号,则发出使能信号,原边电路进入充电阶段;反之,单片机关断使能信号,原边电路进入低功耗的待机状态。

  3.1 副边单片机设计

  副边单片机的程序流程如图4所示。为了与原边同步,副边单片机并非一启动就输出8个高低电平,而是在原边电路向副边电路发送能量之后才发送。原边电路向副边电路发射能量,电容C6会积累电荷,电压升高并维持一定的时间。单片机就可以通过检测第6引脚的电压是否为高电平来确定原边电路是否向副边电路发送能量。开始后,单片机不断地检测第6引脚电压是否为高电平,若是高电平,则单片机执行下一步动作;若不是高电平,则单片机继续检测第6引脚的电压是否为高电平。

  

  图4 副边单片机程序流程

  在检测到第6引脚的高电平后,单片机向开关管发送8个高低电平的驱动电压,以使副边感应电路有节奏地改变耦合系数。

  在发送完8个高低驱动电平后,单片机就一直检测第6引脚是否为低电平。若是高电平,则说明原边一直都在向副边发送能量,此时原副边线圈处于较大的耦合系数状态下,副边电路可以高效地接收原边电路向副边电路发送的能量;若是低电平,则说明本次循环结束,或者受到某种影响而中断了原边能量的发送,单片机进入下一个循环。

  3.2 原边单片机设计

  原边单片机的工作时间分为2个阶段:识别阶段和充电阶段。在识别阶段,若单片机收到预设的信号,则单片机发出使能信号,电路进入充电阶段;若在规定的周期内,单片机没有收到预设的信号,则单片机关断使能信号,电路进入低功耗的待机状态,直到下一个循环。

  假设副边电路发送的是10101010八位高低驱动电平,则其反射到原边电路,经过电压采样电路的采样,原边单片机最终检测到的电压应该是10101010八位高低判别电平。在原边单片机启动后,原边单片机进入识别阶段,原边单片机先发出16个周期的使能信号,让控制电路能正常工作;单片机不停地检测电压采样电路的电压,只要检测到的采样电压与预设值相符,单片机立即进入充电阶段;若单片机检测到的电压与预设值不相符,并且达到了16个检测周期,则判定原边电路没有检测到相符的接收模块,单片机关断使能信号,无线充电器进入低功耗待机阶段;待机结束后,单片机进入下一个循环。在充电阶段,若电压采样电路出现连续的8个高电平,则认为副边电路已远离原边电路,或是副边电路出现了开路、短路的现象,应该关断使能信号,让原边电路进入低功耗的待机阶段。

更多无线充电技术解析/应用案例/市场分析,竟在[无线充电技术应用沙龙],报名戳这!

  

  图5 原边单片机程序流程

  4 结束语

  介绍了无线充电技术QI标准中的通信协议,分析了原副线圈耦合程度对原边电感电压的影响。在此基础上提出了一种身份识别电路。通过对副边电路补偿电容容量的控制,有节奏地改变原副线圈之间的耦合系数,原边单片机采样原边电感的电压,把采样电压与预设电压比较,最终达到识别副边电路的目的。通过适当设计待机时间的长短,达到降低待机功耗的目的。

更多无线充电技术解析/应用案例/市场分析,竟在[无线充电技术应用沙龙],报名戳这!

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top