关于快速充电技术的探讨
能力的情况下用最适宜此时接受 能力的电流充电,因此充电效果显然是最好的。
图5 蓄电池的等效模型
2)在研究充电动态特性时,可以将电池近似地看为一个大 电容和一个小电阻,用图5的简单模型表示。其中:U是充电电压,IC是充电电流。 ICRs+UC=U 其中 IC=CdUC/dtUC=a+bexp(-t/T) 则 IC=dexp(-t/T) 其中:a,b,d为常数;T为时间常数,T=RsC。在恒压充电期间,电池等效内阻Rs近似不变,则充电电流按指数规律衰减。 图6是变压间歇充电的曲线图,和图1相比较可以看到,这种充电曲线能够充分模拟最佳充电曲线。试验结果验证,这种充电方法的确能够有效地提高充电的速度和效率。
图6 变电压间歇充电曲线
3)从工程角度来看,恒压控制更容易实现。
3 充电电源
目前市场上有许多充电集成电路,但大多是针对小功率充电器的,大功率充电器则需要自行设计相应的充电电源。传统的充电电源主要是相控电源,因为包含工频变压器造成电源本身体积较大,且功率损耗也很大。开关电源由于开关频率比较高,所以有体积小、重量轻、损耗小和效率高等特点。开关电源的发展非常迅速,其应用也日益广泛,有逐步取代传统电源的趋势。笔者根据系统的要求,设计了30kHz的高频开关电源作为充电电源。高频电源中的损耗主要有导通损耗、开关损耗、截止损耗和磁芯损耗,其中导通损耗和开关损耗占据很大的比重。为了有效地降低开关损耗和导通损耗,选择IGBT作为功率开关管。IGBT是一种新型复合器件,它集双极型功率晶体管和MOSFET的优点于一体,具有电压型控制、输入阻抗高、驱动功率小、控制电路简单和元件容量大等优点。功率开关管的驱动电路选用专用的IGBT驱动集成电路EXB841,用于驱动大容量、高速IGBT(容量在300A,1200V以下,频率在40kHz以下)的专用驱动芯片;它由放大部分、过流保护部分和5V电源基准部分组成。过流保护部分实现过流检测和延时保护功能,能够提供+15V和-5V2种电压,以满足IGBT开通时所需的正偏压和关断时所需的负偏压。
在系统中,设计了移相式零电压全桥逆变电路,其电路原理图和波形图见图7。这种变换器是在恒频变换器和移相控制谐振变换器两者的基础上发展起来的,它利用变压器的漏感和开关管的寄生电容来实现零电压;采用移相控制,每相桥臂的导通相差一个移相角。系统中采用的移相控制芯片是美国Unitrode公司生产的UC3875。
图7 移相式零电压开关的全桥变换器结构(a)和控制波形(b)
同普通的全桥电路相比,电路中增加了一个谐振电感Lr,在4个功率开关管上并联了一个电容Ci(i=1,2,3,4),Ci含开关器件的寄生电容。开关管的控制波形如图7(b)所示。其中的3,1,4,2段即死区时间,除死区时间外,电路中总是有2个开关管同时导通,共有4种组合:2和3,3和1,1和4,4和2;周而复始地工作。其中的2和3,1和4组合为全桥逆变电路,输出能量;3和1,4和2不输出能量。调节这2类组合的时间比例,即调节移相角,就可以实现输出信号的调节。电路的谐振发生在4种组合相互转换的死区时间内,每一开关周期有4次。
逆变电路参数的不同,使相位超前的桥臂开关S1和S2容易实现零电压导通,而相位滞后的桥臂开关S3和S4不太容易实现零电压导通。这就要求相应电感的选取要符合一定的条件,以满足系统谐振的要求。
进行了电源移相控制测试试验(图8)。试验结果表明,在负载一定的情况下,移相控制角由0~180°的调整,可以线性地调整电源输出电压。当移相控制角为0°时,电源输出电压为0,充电电源停止输出电流;当移相控制角为180°时,电源输出电压和输入电压基本一致,此时充电电源的输出电压最大。
经过功率变换器后的输出波形见图9(a),通过高频变压器后的波形与其相同。经整流输出后的波形如图9(b),是移相控制角为90°,变换器前置直流电压50V时的情况,这种情况下的输出电压波形接近占空比为50%的方波。
图8 移相控制角与输出功率和输出电压的关系 (a)功率变换器输出波形(变压器次级输出波形)(b)电源高频整流输出波形
图9 测试试验中的输出波形
4 模糊控制器结构设计
系统采用了变压间歇充电法,可以适时转变充电及其间歇过程。系统通过实时控制其充电间歇过程采集蓄电池端电压。当蓄电池达到预定的停充电压时,停止充电并间歇预定的时间,然后系统调整进入下一阶段的充电过程。恒压充电过程,采用笔者提出的模糊控制方法,即在每一个恒压阶段,根据输入变量的变化进行模糊推理,决定输出变量的变化量,使充电电压保
快速充电 相关文章:
- 多功能电动汽车的快速充电系统设计方案(02-28)
- 快速充电设计模型(01-10)
- USB电源适配器的电路保护方案(03-23)
- 基于电动汽车快速充电技术研究及发展趋势(09-16)
- 快速充电技术解析及解决方案集锦(09-17)
- ITECH新型测试方案,为快速充电保驾护航(11-22)