兼容多种运算核心 HSA架构提高处理器能源效率
闲置耗电量降低,将可以帮助标准使用耗电,得以从相邻的2008年平台"Puma"CPU的近4W,降低至2014年"Kaveri"APU的1.6W,将会产生2.5倍的基准耗电量改善(两种产品都适用于相同的35W笔记型电脑热功率封包)。数量更多的CPU核心、更快的时脉速度,以及GPU运算协助,使得处理器效能得以改善,让"Kaveri"的运算力比起"Puma"高达4.5倍。因此,相较于"Puma","Kaveri"提供十倍 (2.5×4.5)以上的标准使用能源效率增加,如标准耗能最大效能所示。
Tirias Research预估超微半导体将利用多项远远超越"Kaveri"的效能改善,在2015年达成下一次的大幅耗电降低。由于耗电渐趋于零,且开始以平台组件功率为主,未来的闲置耗电降低步调必将趋缓。Tirias Research分析,根据超微半导体产品规画,该公司可望在2008年至2020年之间实现标准使用耗电量的大幅降低,在此12年间达成16倍的改善,如图3A线所示。
有鉴于GPU的效能预计将持续提升,且可运用此种异质运算能力(图3中B实线)的应用程式将越来越多,Tirias Research预测超微半导体将于2020年达到对等点。在此点上,约有一半的尖峰值效能将来自GPU,另一半则来自CPU。保守估计,由于CPU及 GPU两者都在持续进化,这种矽芯片资源分配方式能够使2020年的未来APU相较于2014年的"Kaveri"产生四倍的运算效能提升。
Tirias Research相信更大的GPU和更趋平行的应用程式将有助于促进更显着的效能改善。以此合理保守估计额外的四倍运算效能提升,结合至少六倍的标准使用耗电量降低,将可使超微半导体的最大效能对闲置耗电比在2014年至2020年之间展现高达二十五倍的改善。这是十分惊人的大幅变化,兼具两方面之长,低闲置耗电既可以减少能源耗用,又能以高峰值效能支援未来的高阶应用。
由于HSA可降低对于APU之CPU端的依赖程度,超微半导体将之视为改善高度平行工作负载效能与节电的必要方法。除了GPU之外,超微半导体现正配合智能型手机芯片开发者所需,将单一功能加速器整合于APU。这些专用加速器的设计目标是以最小晶粒面积提供最高能源效率表现,将耗电量降到最低。专用单元的缺点在于无法轻易适应新的演算法,因为可编程性的有限。而其他替代性可编程单元如以通讯与音讯处理见长的数位讯号处理器,可替CPU核心分担相关任务。
例如,超微半导体已于其最新APU及GPU中加入数位音效处理器,藉此解除CPU处理音讯的负担。对如音讯处理等工作负载而言,这些微小的架构新增可带来极大的功率效率增益,相较于单独以CPU处理,其增益可达两倍至将近二十五倍不等。
超微半导体运用支援HSA的软体结合其节电设计,让笔记型电脑和平板电脑APU的电池续航力与峰值效能胜过现今水准。
- 用于移动微处理器的高性能、集成化电源 IC:并非仅适合便携式设备(08-23)
- 善用微处理器简化电源供应器设计(10-25)
- 可编程和宽输入电压电池充电器的设计方案(03-13)
- DSP处理器电源方案设计(02-08)
- 高性能处理器的负载点电源设计(09-23)
- NXP (Freescale) NOVPEK i.MX6Q/D(05-16)