基于DDS芯片的全数控函数信号发生器的设计与实现
9850输出的方波经积分电路转换为三角波后,经AD811高速运放可提高其负载能力。
4系统软件设计
4.1 主程序
主程序可控制整个系统,包括控制系统的初始化、显示、运算、键盘扫描、频率控制、幅度控制等子程序,其主程序流程如图7所示。
初始化可将系统设定为默认工作状态,然后通过扫描键盘来判断是否有按键按下以确定用户要执行的任务,同时通过判断23H.4、20H.1、20H.0各功能标志位来确定应完成的功能。当23H.4=1时,计算频率值系统工作在频率计方式下;当20H.1=1时,检测峰峰值系统将检测输出信号的峰峰值:而当 20H.0=1时.则更新LCD显示内容,当执行完后返回键盘扫描程序并以此循环。各功能标志位均由键盘、峰峰值检测和定时程序等控制,从而实现各种功能。
4.2键盘扫描子程序
键盘扫描子程序如图8所示。因按键较多。本系统采用2&TImes;8行列式键盘来节约I/O口,并用程序把8根列线全部拉低,再判断2根行线是否有低电平,如果没有,说明没有按键被按下,系统则退出键盘扫描程序,否则,依次拉低列线,然后依次判断行线是否有低电平并判断键号,键号确定后再转到键号相对应的功能程序去执行。键盘主要方便用户设置频率、幅度、选择工作方式等功能。
4.3 信号频率数字预置子程序
信号频率的数字控制程序流程如图9所示。该部分程序主要用于将键盘输入值转换成十六进制数据,然后产生相应的频率控制字并送至DDS芯片,以改变DDS的相位增量,最终输出相应频率信号。
结束语
通过严格的实验测试证明,本系统采用DDS完全可以实现输出信号类型的选择设置、信号频率数字预置、信号幅度数字步进可调等功能,是一种输出信号频率覆盖宽(0.023 Hz~40 MHz)、信号源分辨率高、波形失真小、全数控型函数信号发生器。具有一定的实用开发价值。
DDS技术 信号发生器 AD9850 AT89S52 相关文章:
- 低频正弦信号发生器的设计(02-15)
- 基于AD9851的信号发生器设计(04-02)
- 基于CPLD和LVPECL的可调窄脉冲信号发生器设计与实现(11-13)
- 一种新型的正弦信号发生器的设计与实现(04-23)
- 基于SLH89F5162的信号发生器设计(02-24)
- 什么是信号发生器?信号发生器的使用方法,信号发生器各种干货知识(04-09)