微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > Σ-Δ型ADC造就新一代智能车用传感器

Σ-Δ型ADC造就新一代智能车用传感器

时间:05-05 来源:ADI供稿 点击:

  对于汽车中电子器件,人们很容易一下子列举出MCU、大量的传感器、驱动部件等,似乎很难想起"不太起眼"的模数转换器(ADC)。事实上,ADC特别是Σ-Δ型ADC分布在汽车的各个角落中。ADC正在使传统意义上的传感器变得不再传统,传统意义上的传感器通常担当的是信号调整的角色,即将客观世界中一些非常微小的小信号转换成可以被电子器件识别的电信号,但是现在的技术趋势是这些传统的纯模拟的传感器内部正在越来越多的引入数字处理的部分,而这其中就包括了Σ-Δ型ADC。

  业界越来越多地将传感器和Σ-Δ型ADC进行融合,来优化传感器的性能。工程师们同时在模拟信号采集和数字后处理要求的两个方面考察传感器和转换器,这不仅可以使转换器"充分激发"传感器元件的效能,以此优化传感器性能,而且将成本减至最低。

  汽车应用为何青睐Σ-Δ型ADC

  Σ-Δ型ADC通常被认为是最复杂的模数转换器架构,它的模拟部分非常简单(类似于一个1bit ADC),而数字部分则要复杂得多,它综合运用独特的"采样"与"降噪"技术,按照功能划分为数字滤波和抽取单元。由于Σ-Δ型ADC更接近于一个数字器件,所以其制造成本相对低廉。

  通常,Σ-Δ型ADC的分辨率非常高(16-24 位),不过速度较低(10-480 KSPS)。由于采用高倍率过采样技术,降低了对传感器信号进行滤波、前置放大的要求,实际上取消了信号调理,所以非常适合测量来自应变计、热电偶和电阻温度传感器等传感器的小信号而无需采样保持放大器或增益调整放大器。

  由于集成度的增加,先进的"数字传感器"产品具有各种各样的设计优势或更加"智能"。ADC可以使用内部校准和线性化程序来处理传感器输出;传感器可以校正传感器增益和偏移,并产生片内传感器激励信号;数字控制型可编程增益放大器可用来"优化"ADC至特定传感器读数,然后重新配置以从相同的传感器读取一个不同的信号。ADC内置温度监控功能并根据温度调节转换器输出,可计算并消除热误差。微机电(MEMS)传感器如加速度计和陀螺仪,同样也结合了数据传感器来感应惯性和旋转运动,非常适用于汽车安全及稳定控制系统等一系列汽车应用场合。总之,这意味着设计人员不必像以往那样过多关注如何处理具体的传感器性能问题,从而加快上市并大多能改善性能。

  引入数字处理的部分使汽车电子系统可以实现一些非常先进非常有用的功能,这些功能包括零点消除、自诊断、滤波频段的设定、量程可调等。而Σ-Δ型ADC之所以能在这其中担当重要角色,主要缘于它的架构。

  

  图2.各种ADC架构比较。

  如上图2所示为各种架构的ADC采样率和精度的比较。通常我们有这样的共识:最常用的通用架构一般是逐次逼近寄存器 (SAR) 型;而用于高分辨率(要求对从小到大的各种信号进行数字化处理的工业领域)的主要类型是Σ-Δ型;当前处理高速信号的模数转换器大多是流水线型。

  我们先来看一辆汽车对ADC动态范围和分辨率的要求。汽车应用中通常要处理大的动态范围的信号,例如如果要检测电池的电量,当发动机熄火时,这时待机电流只有几十毫安,而当起动机启动时,工作电流可以达到几百安,相差将近10万倍,要检测这么大的动态范围的信号,当然需要具有大的动态范围和非常高分辨率的ADC架构了。Σ-Δ型具有的宽动态范围非常适合这一应用。除此之外,Σ-Δ型ADC高分辨率的特性还非常适合于汽车的安全应用。

  虽然Σ-Δ型ADC相比其它架构的ADC速度并不高,但这并不影响它在汽车中的应用。如对于车辆侧翻的检测,汽车一侧轮胎在开始抬起时候的角速度并不高。

  Σ-Δ型ADC在汽车安全系统中的应用

  图3体现了Σ-Δ型ADC在MEMS传感器中的应用实例,包括三个方面:安全气囊、电子稳定系统、侧翻的稳定系统。

  

  图3. 集成了Σ-Δ型ADC的MEMS传感器用于汽车安全系统。

  无论是安全气囊还是电子稳定系统或者侧翻的稳定系统,其系统设计原理都是基于用MEMS传感器来检测车的姿态。比如安全气囊,当碰撞发生的时候去检测这个碰撞所带来位移的加速度和减速度,当加速度达到一定程度,才能判断这是一个碰撞,而不是汽车本身的刹车带来的减速度,这里的MEMS传感器不只是检测信号,还作为一个决策者的角色而存在。

对于电子稳定系统,则要判断汽车在雪地上的转弯是不是还带有侧滑,汽车转弯时有一个角速度,当这个角速度达到一定的水平就

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top