电流源设计小Tips(一):如何选择合适的运放
时间:11-17
来源:本站整理
点击:
因此推论振荡的产生应与Ro、Cgs、gm和Rsample均相关。
分析Aopen之三:为何振荡
将运放、MOSFET和Rsample构成的传递函数级联,得到下图的完整开环增益Aopen:
图27
Aopen具有3个主极点,分别为:
1. 运放低频主极点pL
2. MOSFET输入电容造成的极点po
3. 运放高频主极点pH
gmRsample《1时,po在0dB线之下,系统稳定。
gmRsample》1时,po在0dB线之上,系统振荡。
gmRsample=1时,po=0dB,系统处于临界状态。
此问题的原因说来简单:
gm与电流Id息息相关,gm随Id的增大而增大,因此gmRsample
可能由《1变化至》1,使极点po位于0dB线之上,1/F=0dB线与
Aopen的交点处斜率差为40dB/DEC,因此系统振荡。
当然,可通过降低Rsample避免振荡,然而这不是治本的方法,而且会引起成本、噪声等一系列问题。
处理振荡时的一个基本原则,尽量首先剪裁Aopen,而后才是1/F。改变1/F可能造成系统瞬态性能的变化。
频率补偿是双刃剑,可能造成系统性能下降,过分的单一补偿会造成大量问题。因此应尽量使用多种补偿方法,而且每种补偿适可而止。
本次将采用三种补偿方法,分别解决三种问题:
1. 加速补偿
2. 噪声增益补偿
3. 高频积分补偿
由于篇幅的原因,第一部分就先说到这里,接下来我会谈到加速补偿,校正Aopen的问题,敬请留意。
- 怎样判定4-20mA电流源的电流范围?(08-18)
- 反向模式下构建电流源驱动器的优化设计(10-16)
- 建立精密的直流浮动电流源(11-26)
- 电流源设计小Tips(二):如何解决运放振荡问题(11-24)
- 电流源设计小Tips(三):确认电流源电路图(02-06)
- 电流源电路 howland电流源电路(02-13)