微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 微波器件设计 > 有源滤波器中的相位关系

有源滤波器中的相位关系

时间:04-25 来源:mwrf 点击:

图17. 相移随Q值的变化特性

虽然幅值响应随Q值的变化并非本文的主题,但也是一个令人感兴趣的问题。图18示出了Q值在上述范围内变化时一个2阶滤波器的幅值响应特性。

当高Q电路应用于多级滤波器时,高Q电路的响应特性的尖峰现象也是令人感兴趣的问题。虽然在理论上这些电路段以何种顺序来级联并无差异,而在实践中,把Q值较低的电路段置于高Q电路段之前将更为有利,这是为了让尖峰现象不致于超出滤波器的动态范围。虽然该图是针对低通段的,但高通响应也存在类似的尖峰。

图18. 随着Q值的变化,2极点滤波器的幅值尖峰特性的变化

高阶次滤波器
传递函数可以级联起来,构成更高阶次的响应特性。当滤波器响应串连起来后,其在任意频率上的dB增益(以及衰减)和相角都相加起来。正如我们在前面指出的那样,多极点滤波器一般是利用级联的二阶电路段搭建的,对于奇次阶滤波器,可以另外添加一段一阶电路。两个级联的一阶电路段并不能像单个二阶滤波段那样提供很宽的Q值变化范围。

图19示出一个通过传递函数级联所构成的4阶滤波器。这里,我们可以看到,滤波器是由两个二阶段所构成的。

图19. 传递函数的级联所构成的4极点滤波器

图20示出了构建一个4阶滤波器的3种方式对相位响应的影响。第一种结构是利用两个Sallen-Key(SK)Butterworth段搭建的。第二种是利用两个多路反馈(MFB) Butterworth段搭建的。第三种是利用一个SK段和一个MFB段搭建的。但是,正如两个级联的一阶电路段并不能构成一个二阶电路段一样,2个级联的2阶Butterworth段并不能等效于一个4阶Butterworth段。第一段Butterworth滤波器的f0为1,Q值为0.5412(α=1.8477)。第二段的f0为1,Q值为1.3065(α=0.7654)。

正如前面所提到过的那样,SK段是同相型的,而MFB是反相型的。图20对这3种4阶电路的相移特性进行了比较。其中SK和MFB滤波器具有相同的相位响应特性,因为两个反相段产生了同相响应(-1×-1=+1)。利用混合拓扑结构(SK和MFB)构建的滤波器的响应特性将偏移180° (+1 × –1 = –1)。

图20. 不同结构的4阶电路的相位响应

请注意,正如可以预料到的那样,总的相移特性是一个2阶电路段的两倍360° vs. 180°。高通滤波器将拥有类似的相位响应,但偏移相差180°。

该级联的思想可以用来搭建更高阶次的滤波器,但是,在实践中,超过8阶的滤波器很难实现。将来的文章将对带通、陷波(带阻)和全通滤波器的相位关系进行考察。

 

参考文献

  1. Daryanani, G. Principles of Active Network Synthesis and Design. J. Wiley & Sons. 1976. ISBN: 0-471-19545-6.
  2. Graeme, J., G. Tobey, and L. Huelsman. Operational Amplifiers Design and Applications. McGraw-Hill. 1971. ISBN 07-064917-0.
  3. Sallen, R. P., and E. L. Key. "A Practical Method of Designing RC Active Filters." IRE Trans. Circuit Theory. 1955. Vol. CT-2, pp. 74-85.
  4. Thomas, L. C. “The Biquad: Part II—A Multipurpose Active Filtering System.” IEEE Trans. Circuits and Systems. 1971. Vol. CAS-18. pp. 358-361.
  5. Thomas, L. C. “The Biquad: Part I—Some Practical Design Considerations.”IEEE Trans. Circuits and Systems. 1971. Vol. CAS-18. pp. 350-357.
  6. Tow, J. “Active RC Filters—A State-Space Realization.” Proc. IEEE. 1968. Vol. 56. pp. 1137-1139.
  7. Van Valkenburg, M. E. Analog Filter Design. Holt, Rinehart & Winston. 1982.
  8. Williams, A. B. Electronic Filter Design Handbook. McGraw-Hill. 1981.
  9. Zumbahlen, H. “Analog Filters.” Chapter 5, in Jung, W., Op Amp Applications Handbook. Newnes-Elsevier (2006). (Original chapter from ADI Seminar Notes is available online.)
  10. Zumbahlen, H. Basic Linear Design. Ch. 8. Analog Devices Inc. 2006. (Available soon).

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top