MEMS技术浅谈及应用设计方案集锦
实现闭环工作的另外一种方法使用两级bang-bang反馈信号。由于只用到两个点的二次V/F关系,这种方法天生就是线性的,而且并不依赖MEMS电容 的匹配或使用负电压去抵消非线性。使用两级激励意味着将反馈信号幅度中的信息转换为时间信息。因此Σ-Δ调制可以成为实现闭环数字读取传感器的一种有效技 术。另外,基于Σ-Δ的环路默认提供模数转换功能,因此不需要再使用单独的A/D。Σ-Δ闭环架构代表了高性能数字读取传感器的最优架构。值得注意的 是,Σ-Δ系统的超采样特性会使操作系统工作在相对较高的频率,因此系统变得较易受MEMS寄生电容耦合的影响。尽管如此,抵消这种耦合的电路技术已经非 常成熟,并且可以在传感器的接口ASIC中实现。Σ-Δ闭环传感器的架构选择需要依据为电子Σ-Δ系统开发的深层技术。然而,具有自然电子-机械特性的 Σ-Δ闭环传感器在系统级设计与优化时需要正确理解MEMS的工作原理和建模机制。典型MEMS传感器的检测部分行为就像是一个二阶集总式质量块(阻尼 器)弹簧机械系统,具有单一的谐振频率,其传递函数如下:
其中Fin(s)是输入的力(在使用陀螺仪时是科里奥利力,在使用加速度计时是由于输入加速产生的力)。x(s)是传感器质量块对应输入力的位移。m是质量块的质量,D是阻尼系数,k是弹簧常数(刚度)。
MEMS传感器的工作原理基于这样一个事实:给MEMS施加一个输入力(Fin)将产生一定的位移,进而改变MEMS电容(Cout)。这个Cout可 以用连接MEMS单元的电路进行测量。带激励电极的MEMS传感器建模如图1所示。这个模型的增益是Kx/c,代表由于MEMS质量块位移引起的输出电容 变化。Kx/c等于:
其中Cd是MEMS的检测电容,X0是电容间隙距离。系数2代表差分工作。这个模型还包含一个KV/F因子,它是由于反馈电压VACT产生的力:
其中VACT是激励电压,Ca是MEMS的激励电容。吸合(拉入)是电容式MEMS传感器的一个重要现象,此时电容极板由于施加的大电压而吸合在一起,从而导致工作故障。防止吸合的最大静态电压等于:
其中C0是电容的剩余容量。上述Vp表达式只是用于展示Vp的相关性。
图1:MEMS惯性传感器传感部分模型
但是在像Σ-Δ环路中那样的动态电压激励情况下,上述表达式不能精确地表示Vp的实际值。在基于Σ-Δ的传感器中,MEMS用作环路滤波器,会形成一个二阶电子-机械式Σ-Δ系统。
将MEMS引入Σ-Δ环路可以提高阶数,并进一步抑制量化噪声。图2显示了基于Σ-Δ的传感器框图,其中的MEMS与特殊应用集成电路(ASIC)连接在一起组成了一个完整的传感器。这个系统还集成了一个额外的Hcomp块,用于补偿环路并保持其稳定性。
图2: 基于Σ-Δ的闭环传感器框图
这种闭环传感器的系统级设计将确定各个MEMS和ASIC参数的最优值,比如刚度(k)、间隙距离(X0)、阻尼系数(D)、激励电压(VACT)和 ASIC噪声。为了确保Σ-Δ环路的稳定工作,传感器的输入信号不能超过反馈信号。因此激励电压值VACT定义了给定MEMS参数集条件下允许的最大输入 信号。然而,为了允许大的输入信号范围而产生大的VACT会导致功耗加大,而且有时要求采用特殊的ASIC技术才能允许高压工作。ASIC技术的选择将影 响到传感器的总体成本。更重要的是,VACT允许的最大值受MEMS吸合电压Vp的限制。
MEMS间隙距离(X0)是系统能否实现低噪 声工作的一个关键参数。减小X0会产生更高的Cd和Kx/c,并因此增加MEMS前向增益(灵敏度)。高灵敏度可以减少ASIC噪声对以传感器输入为参考 的噪声的影响。另一方面,MEMS的布朗噪声功率直接正比于阻尼系数(D)。总的传感器噪声由MEMS噪声和 ASIC噪声组成。可以根据传感器总体目标性能、MEMS灵敏度和阻尼系数估计最大可容忍的ASIC噪声值。应该注意的是,可以达到的最小X0受MEMS 技术的限制。X0值对最大输入范围的影响,取决于激励电压(VACT)是否受限于MEMS的吸合电压。如果VACT受吸合电压的限制,那么减小X0将导致 允许的最大输入信号范围减小。如果VACT不受吸合电压的限制,那么X0的减小和激励电容(Ca)及KV/F的改进可形成更高的反馈力,最终形成更大的输 入范围。
MEMS单元的刚度(k)是一个重要的系统设计参数,因为它可以在MEMS单元中得到很好的控制,不像X0,其最小值受 MEMS技术的限制。假设ASIC 噪声主导传感器噪声,那么可实现的最
AT89C205l LIS331DL 惯性传感器 MEMS 相关文章:
- 基于MEMS惯性传感器的加速度测量无线传输系统设计(06-13)
- 多轴传感器受追捧 MEMS加速挺进医疗设计(03-24)
- Ka 波段下90°分布式MEMS 移相器的优化设计(04-02)
- MEMS加速度计在声学拾音器中的应用(09-30)
- MEMS光开关性能与发展(10-24)