微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > MEMS技术浅谈及应用设计方案集锦

MEMS技术浅谈及应用设计方案集锦

时间:02-24 来源:网络整理 点击:

印机喷头,保持这些墨滴并在需要时精确地放下这些墨滴——这一技术被称为按需投放(DoD)。墨滴 放置在横跨压电材料(比如 lead zirconateTItanate,)组成的元件中,通过施加的电压来进行挤压。这增加了打印头墨水室的压力,通过施力形成一个非常小量(相对压缩)的 墨水,并从喷嘴中喷出。

   与此同时,其它一些MEMS技术才刚开始大规模进入市场。微机械继电器(MMR),比如欧姆龙开发的,这种继电器更快,更高效,其集成度前所未有。欧姆 龙发挥了自己的微机电系统专业优势,为市场带来新款温度传感器:D6T非接触式MEMS温度传感器。该D6TMEMS制作过程中集成了ASIC和热电堆元 件,所以这种小型化的非接触式温度传感器大小仅为18&TImes;14&TImes;8.8毫米(4x4元件类型)。

   当然,当前的MEMS技术不限于单个传感器器件,考虑一下人的感官:单只眼带给我们颜色、运动和(一些)位置信息,而两只眼睛将带来双眼视觉,改善立体 感知。事实上,我们的许多感知体验需要感官的组合,这样的感知才是最终有意义的。我们的思路是,通过将传感数据组合起来,可以弥补单个感官器官的弱点和缺 点,并达到某种程度上最佳的环境理解。在人类领域,这就是所谓的"多通道整合";而在电子领域,这就是所谓的传感器融合。传感器融合,特别是当它涉及到 MEMS时,是移动设备中传感器技术的一个重要的进展。许多制造商已经开始提供完整的解决方案,如飞思卡尔面向Win8的12轴Xtrinsic传感器平 台。该平台集成了3轴加速度计,3轴磁力计,压力传感器,3轴陀螺仪,环境光传感器,并带有一个ColdFire + MCU,以提供一个完全硬件解决方案——还打包提供专用的传感器融合软件。

  随着MEMS器件的优势获得认可,MEMS市场步伐也在持续加快。据YOLEDéveloppement2012年MEMS产业报告中所述,在接下来6年,MEMS"将继续保持平稳、持续的两位数增长",2017年全球市场价值将达到210亿美元。

基于闭环MEMS的电容式惯性传感器设计

  微机械式惯性传感器已经成为许多消费产品的一个组成部分,比如手持式移动终端、照相机和游戏控制器等。此外,微机械式惯性传感器还被广泛用于工 业、汽车安全和稳定控制以及导航领域中的振动监测。一般来说,微型传感器可以是压电式、压阻式或电容式传感器。然而,电容式传感的高热稳定性和高灵敏度使 得它对种类广泛的应用来说更具吸引力。

  带数字读取功能的基本的电容式传感器接口电路由电容到电压转换器(C/V),以及随后的 模数转换器(A/D)和信号调节电路组成。以开环配置(没有反馈信号)运行这种传感器可以形成相对简单的系统,这种系统本身就比较稳定。尽管如此,开环工 作时的系统对MEMS参数会非常敏感。此外,整个系统的线性度受传感器系统链中每个模块的线性度影响,而且C/V和A/D的动态范围要求可能会更加严格。 相反,将MEMS传感器放在负反馈闭环中使用有许多好处,例如改进的带宽、对MEMS器件的工艺和温度变化具有较低的敏感性。另外,由于C/V只需要处理 误差信号,与开环工作方式相比,C/V动态范围和线性指标可以放宽。因此为确保系统的稳定性,正确设计反馈环路就显得非常重要。

  在电容式传感器中,反馈信号以电容激励电极上的电压信号形式施加到MEMS。这个施加的电压将产生一个静电力并作用到MEMS质量块上。因此最终形成的系统被称为力反馈系统。然而,电容有一个二次的电压比力关系,它会限制系统的线性度。

   克服电压比力(V/F)二次关系负担的一种方法是以差分方式施加激励信号,以便抵消二次项。然而,这种技术要求正负电压值,这将增加传感器接口ASIC 的复杂性。更重要的是,差分工作所需的两个激励电容如果不匹配会导致激励二次项不能完全抵消,因此电容不匹配将限制系统可实现的性能。

实现闭环工作的另外一种方法使用两级bang-bang反馈信号。由于只用到两个点的二次V/F关系,这种方法天生就是线性的,而且并不依赖MEMS电容 的匹配或使用负电压去抵消非线性。使用两级激励意味着将反馈信号幅度中的信息转换为时间信息。因此Σ-Δ调制可以成为实现闭环数字读取传感器的一种有效技 术。另外,基于Σ-Δ的环路默认提供模数转换功能,因此不需要再使用单独的A/D。Σ-Δ闭环架构代表了高性能数字读取传感器的最优架构。值得注意的 是,Σ-Δ系统的超采样特性会使操作系统工作在相对较高的频率,因此系统变得较易受MEMS寄生电容耦合的影响。尽管如此,抵消这种耦合的电

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top