微波EDA网,见证研发工程师的成长! 2025婵犵數濮烽弫鍛婃叏閹绢喗鍎夊鑸靛姇缁狙囧箹鐎涙ɑ灏ù婊呭亾娣囧﹪濡堕崟顓炲闂佸憡鐟ョ换姗€寮婚敐澶婄闁挎繂妫Λ鍕磼閻愵剙鍔ゆ繛纭风節瀵鎮㈤崨濠勭Ф闂佸憡鎸嗛崨顔筋啅缂傚倸鍊烽懗鑸靛垔椤撱垹鍨傞柛顐f礀閽冪喖鏌曟繛鐐珕闁稿妫濋弻娑氫沪閸撗€妲堝銈呴獜閹凤拷04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珕闂佽姤锚椤︻喚绱旈弴銏♀拻濞达綀娅g敮娑㈡煕閺冣偓濞茬喖鐛弽顓ф晝闁靛牆娲g粭澶婎渻閵堝棛澧遍柛瀣仱閹繝濡烽埡鍌滃幗闂佸搫娲ㄩ崑娑㈠焵椤掆偓濠€閬嶅焵椤掍胶鍟查柟鍑ゆ嫹05闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珖闂侀€炲苯澧扮紒顕嗙到铻栧ù锝堟椤旀洟姊洪悷鎵憼闁荤喆鍎甸幃姗€鍩¢崘顏嗭紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鐘栄囨煕鐏炲墽鐓瑙勬礀閳规垿顢欑紒鎾剁窗闂佸憡顭嗛崘锝嗙€洪悗骞垮劚濞茬娀宕戦幘鑸靛枂闁告洦鍓涢敍娑㈡⒑閸涘⿴娈曞┑鐐诧躬閹即顢氶埀顒€鐣烽崼鏇ㄦ晢濠㈣泛顑嗗▍灞解攽閻樺灚鏆╁┑顔芥尦楠炲﹥寰勯幇顒傦紱闂佽宕橀褔鏌ㄩ妶鍡曠箚闁靛牆瀚崗宀勬煕濞嗗繑顥㈡慨濠呮缁辨帒螣閼姐値妲梻浣呵归敃銈咃耿闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷�
首页 > 硬件设计 > 硬件工程师文库 > 导入Cascode结构 GaN FET打造高效率开关

导入Cascode结构 GaN FET打造高效率开关

时间:02-10 来源:新电子 点击:

  为提高高压电源系统能源效率,半导体业者无不积极研发经济型高性能功率场效应电晶体(FET);其中,采用Cascode结构的氮化镓(GaN)FET,由于导通和开关损耗极低,且具备比矽FET出色的反向恢复(Qrr)特性,因而能显著改善电源系统开关效率。

  射频(RF)应用的氮化镓(GaN)电晶体已面世多年,最近业界的重点开发面向为电力电子应用的经济型高性能GaN功率电晶体。十几家半导体公司都在积极开发几种不同的方法,以实现GaN功率场效应电晶体(FET)商业化。

  GaN HEMT模组解析

  基本的GaN构建模组就是高电子迁移率电晶体(HEMT),它由一块基板上生长的各种GaN层构成。矽是首选基板,因为它能够以极低的成本应用到大直径晶圆中。碳化矽(SiC)或蓝宝石之类的替代基板可能更易于生长GaN层,但是这些基板的成本过高,让商业化和广泛应用变得完全不切实际。HEMT基本上是一种超高速、常开元件,像通过施加负闸偏压即可关闭的电阻。耗尽型(常开)特性对于将其应用到传统电力电子电路拓扑中来说可能是一种挑战。例如,半桥拓扑如今被广泛应用,如果耗尽型FET被用做上臂、下臂开关,那么有必要让闸极控制电路正常运行,从而再为DC汇流排加电前提供负偏压,因为如果未偏压,半桥就会短接汇流排。另一种替代方法是将非耗尽型主使能开关与半桥串联,一旦桥接电路的剩余部分可以正常运行了,即可被启动,但是这样会增加成本和传导损耗。

  另外,还可以调整GaN HEMT设计以便将闸临界电压由负转正,进而实现常关的增强型元件。增强型GaN HEMT可在低、中压范围(高达200V)使用,很快就可以达到更高电压(600V)。然而,就当今的技术而言,由于面临闸极驱动设计挑战,所以必须平衡增强型元件的便利性、性能和稳定性,增强型GaN HEMT的临界值电压较低,而且可以完全导通的增强型VGS和绝对最大额定值的VGS通常只差1V。鉴于GaN HEMT的开关速度极快,促使从漏极耦合到闸极的C dv/dt造成闸极驱动电路很容易受到「闸极反弹」电压的影响。尽管如此,增强型GaN HEMT仍然具有诱人优势,并且将来的产品设计毫无疑问会越来越好。

  Cascode结构拓展电压范围

  GaN HEMT和低压(20?40V)矽FET的Cascode连接如图1所示,Cascode就像工作电压范围被GaN HEMT扩展了的低压矽FET。GaN HEMT与矽FET的漏极相连,将电压范围扩展到600V之高。因为HEMT的闸极与矽FET的源极相连,所以矽FET的VDS就成了GaN HEMT的负VGS,从而自动提供必要的负偏压以实现关断操作。该结构有助于缓解任何闸极驱动问题,因为被驱动的闸极实际上是低压矽FET。虽然仍然存在同样的高开关速度「闸极反弹」问题,但Cascode矽FET的临界值电压和最高闸值电压都比增强型HEMT高得多,进而降低这些问题对它的影响。虽然开尔文(Kelvin)源极引脚和主源极的电路节点相连,但它的电流通路不同,也不与主漏极电流共用,因此消除了「共源电感」,进而减少了寄生L di/dt引起的闸极驱动器介面问题。

  闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑娑⑺囬悽绋垮瀭濡わ絽鍟粻娑樏归敐鍛础缂佸鑳剁槐鎾诲磼濮橆兘鍋撻悜鑺ュ€块柨鏇氱劍閹冲矂姊绘担鍛婂暈闁荤喆鍎抽幑銏狀潨閳ь剙顕f繝姘亜缁炬媽椴搁弲顒勬⒑閹稿海绠撴繛璇х到鏁堟俊銈呮噺閸嬧剝绻濇繝鍌涘櫣妞わ絽銈搁幃浠嬵敍濞戞ɑ璇為梺璇″枟閻燂妇鎹㈠┑瀣倞闁靛ě鍐ㄥ婵犵數濮烽弫鎼佸磹椤栫偛鐒垫い鎺戝绾惧鏌熼崜褏甯涢柣鎾寸洴閹鏁愭惔鈥茬敖婵犫拃鍐粵闁逛究鍔嶇换婵嬪川椤曞懍鍝楅梻浣告贡閹虫挾鈧氨澧楁穱濠囧箹娴h倽銊╂煥閺冣偓閸庡磭绱為幒妤佲拻闁稿本鐟ㄩ崗宀勬煙閾忣偅宕岀€规洜鏁诲浠嬵敇閻愭鍞甸梻浣芥硶閸o箓骞忛敓锟�...

  图1 GaN HEMT和低压矽FET的cascode连接示意图

  体二极体特性

  Cascode GaN FET具有出色的体二极体行为。这是600V GaN Cascode开关的主要特性和优势之一:与绝缘闸双极性电晶体(IGBT)、Super-junction FET或其他矽FET相比,GaN Cascode的反向恢复电荷(Qrr)要出色得多(与SiC肖特基二极体相似)。随着温度的变化,测量的Qrr几乎是平直的,而温度升高时矽FET的Qrr会增加二至三倍。原因在于,在给定的Rds(on)下,20?40V FET的Qrr比600V FET低几个数量级。HEMT没有少数载流子,因此增加了电容,但是不会增加反向恢复电荷。因此,Cascode提供了25V矽FET的低Qrr性能,却将电压范围扩展到了600V。GaN Cascode与IGBT二极体和Super-junction FET的Qrr比,分别高约二十倍和两百倍。

  低Qrr意义重大,因为体二极体性能通常是硬开关应用的制约因素,600V GaN Cascode的传导损耗低于IGBT,反向恢复电荷低于常与IGBT一起使用的超高速二极体。这样就能够在高得多的频率下采用半桥拓扑,从而改善传导和开关损耗,而且它的振荡和过冲也比矽的元件低。

  即使对于LLC谐振转换器这样的软开关拓扑,GaN Cascode的死区时间也比矽Super-junction FET低,因为其总输出电荷(Qoss)比具有相同Rds(on)的FET低三倍。即使LLC拓扑是ZVS,在通道反向传导之前仍然存在着续流二极体,因此Super-junction结构的长反向恢复时间极有可能限制死区时间的降幅。

Super-junction Qoss的极端非线性特征,一般需要几百奈秒(ns)来充电,而且一旦充电,会瞬间

鐏忓嫰顣舵稉鎾茬瑹閸╃顔勯弫娆戔柤閹恒劏宕�

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top