导入Cascode结构 GaN FET打造高效率开关
为提高高压电源系统能源效率,半导体业者无不积极研发经济型高性能功率场效应电晶体(FET);其中,采用Cascode结构的氮化镓(GaN)FET,由于导通和开关损耗极低,且具备比矽FET出色的反向恢复(Qrr)特性,因而能显著改善电源系统开关效率。
射频(RF)应用的氮化镓(GaN)电晶体已面世多年,最近业界的重点开发面向为电力电子应用的经济型高性能GaN功率电晶体。十几家半导体公司都在积极开发几种不同的方法,以实现GaN功率场效应电晶体(FET)商业化。
GaN HEMT模组解析
基本的GaN构建模组就是高电子迁移率电晶体(HEMT),它由一块基板上生长的各种GaN层构成。矽是首选基板,因为它能够以极低的成本应用到大直径晶圆中。碳化矽(SiC)或蓝宝石之类的替代基板可能更易于生长GaN层,但是这些基板的成本过高,让商业化和广泛应用变得完全不切实际。HEMT基本上是一种超高速、常开元件,像通过施加负闸偏压即可关闭的电阻。耗尽型(常开)特性对于将其应用到传统电力电子电路拓扑中来说可能是一种挑战。例如,半桥拓扑如今被广泛应用,如果耗尽型FET被用做上臂、下臂开关,那么有必要让闸极控制电路正常运行,从而再为DC汇流排加电前提供负偏压,因为如果未偏压,半桥就会短接汇流排。另一种替代方法是将非耗尽型主使能开关与半桥串联,一旦桥接电路的剩余部分可以正常运行了,即可被启动,但是这样会增加成本和传导损耗。
另外,还可以调整GaN HEMT设计以便将闸临界电压由负转正,进而实现常关的增强型元件。增强型GaN HEMT可在低、中压范围(高达200V)使用,很快就可以达到更高电压(600V)。然而,就当今的技术而言,由于面临闸极驱动设计挑战,所以必须平衡增强型元件的便利性、性能和稳定性,增强型GaN HEMT的临界值电压较低,而且可以完全导通的增强型VGS和绝对最大额定值的VGS通常只差1V。鉴于GaN HEMT的开关速度极快,促使从漏极耦合到闸极的C dv/dt造成闸极驱动电路很容易受到「闸极反弹」电压的影响。尽管如此,增强型GaN HEMT仍然具有诱人优势,并且将来的产品设计毫无疑问会越来越好。
Cascode结构拓展电压范围
GaN HEMT和低压(20?40V)矽FET的Cascode连接如图1所示,Cascode就像工作电压范围被GaN HEMT扩展了的低压矽FET。GaN HEMT与矽FET的漏极相连,将电压范围扩展到600V之高。因为HEMT的闸极与矽FET的源极相连,所以矽FET的VDS就成了GaN HEMT的负VGS,从而自动提供必要的负偏压以实现关断操作。该结构有助于缓解任何闸极驱动问题,因为被驱动的闸极实际上是低压矽FET。虽然仍然存在同样的高开关速度「闸极反弹」问题,但Cascode矽FET的临界值电压和最高闸值电压都比增强型HEMT高得多,进而降低这些问题对它的影响。虽然开尔文(Kelvin)源极引脚和主源极的电路节点相连,但它的电流通路不同,也不与主漏极电流共用,因此消除了「共源电感」,进而减少了寄生L di/dt引起的闸极驱动器介面问题。
图1 GaN HEMT和低压矽FET的cascode连接示意图
体二极体特性
Cascode GaN FET具有出色的体二极体行为。这是600V GaN Cascode开关的主要特性和优势之一:与绝缘闸双极性电晶体(IGBT)、Super-junction FET或其他矽FET相比,GaN Cascode的反向恢复电荷(Qrr)要出色得多(与SiC肖特基二极体相似)。随着温度的变化,测量的Qrr几乎是平直的,而温度升高时矽FET的Qrr会增加二至三倍。原因在于,在给定的Rds(on)下,20?40V FET的Qrr比600V FET低几个数量级。HEMT没有少数载流子,因此增加了电容,但是不会增加反向恢复电荷。因此,Cascode提供了25V矽FET的低Qrr性能,却将电压范围扩展到了600V。GaN Cascode与IGBT二极体和Super-junction FET的Qrr比,分别高约二十倍和两百倍。
低Qrr意义重大,因为体二极体性能通常是硬开关应用的制约因素,600V GaN Cascode的传导损耗低于IGBT,反向恢复电荷低于常与IGBT一起使用的超高速二极体。这样就能够在高得多的频率下采用半桥拓扑,从而改善传导和开关损耗,而且它的振荡和过冲也比矽的元件低。
即使对于LLC谐振转换器这样的软开关拓扑,GaN Cascode的死区时间也比矽Super-junction FET低,因为其总输出电荷(Qoss)比具有相同Rds(on)的FET低三倍。即使LLC拓扑是ZVS,在通道反向传导之前仍然存在着续流二极体,因此Super-junction结构的长反向恢复时间极有可能限制死区时间的降幅。
Super-junction Qoss的极端非线性特征,一般需要几百奈秒(ns)来充电,而且一旦充电,会瞬间
- GaN(氮化镓)将推动电源解决方案的进步(03-08)
- 功率半导体的革命:SiC与GaN的共舞(02-07)
- 大尺寸磊晶技术突破 GaN-on-Si基板破裂问题有解(05-06)
- 实时功率GaN波形监视(09-28)
- GaN FET与硅FET的比较(10-08)
- 确定GaN产品可靠性的综合方法(03-25)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...