一种无APFC的低成本全电压设计方案
本文提出一种解决全电压的大功率电源方案,采用自动倍压方式,对输入电压进行实时检测,并根据电压等级确定是否进行倍压处理,以满足全电压自适应要求。
同时结合过零检测电路,可实现在无NTC-负温度系数电阻状态下的零压零流启动,有效扼制浪涌电流,提高系统可靠性和耐用性。此外,能满足"能源之星"的待机功耗要求,增强了技术竞争力的同时,可满足了节能环保的要求。
1.引言
相对于传统线性电源,开关电源拥有体积小、重量轻、效率高等方生俱来的优势。因此近些年,研究开关电源的人越来越多,相应的技术也层出不穷。研究成本低廉、性能可靠、兼容性强的开关电源成为众多电源设计工程师不断努力的目标。本文针对大功率开关电源提出一种无APFC的低成本全电压设计方案,该方案使用自动倍压方式有效减小火牛直流输入电压的范围,从而大大降低电源成本。
2.全压电源
统计全世界交流电压,可以将电压分为:
日本为代表的100V,美国为代表的120V,墨西哥为代表的127V,中国为代表的220V,欧洲多为230V,澳大利亚240V.因此,世界各国电压分布在100V-127V和220V-240V两个电压段。即若能满足这两个电压段要求的开关电源,即可认为是全电压开关电源。实现全压的开关电源目前大致可分为:普通无级式、APFC无级式、自动倍压式。
2.1 普通无级式
普通无极开关电源在小功率开关电源中应用非常广泛。在小于300W的小功率段,设计者通常在兼顾结构和成本的前提下,采用100-240V的全段电压方案。虽然结构简单,但对功率器件(如:火牛、开关管、整流管)则提出了较高要求。由于在一定范围器件参数的提高对于价格并无太大影响,使得在小功率段具备相当的性价比的。随着功率上升,电源对各部分的功率器件提出了新的要求,这个要求在价格上和技术上都有较大的困难。
2.2 APFC无级式
APFC是主动式PFC,使用专用PFC控制器。
电路功率元件由标准的boost电路组成,通过电压和电流的双重反馈,其中电压位于外环,而电流位于内环。因此,APFC在保证输出端恒定电压的同时,使得电流的波形为正弦波。
APFC带来的好处也是显而易见:
①较大的提高功率因数;
②可以兼容输入100-240V全段电压;
③EMC方面有很好的改善。
不足之处:
①体积和重量有所增大;
②电源成本大概有百分之五十的上升。
2.3 自动倍压式
鉴于手动操作的种种弊端,以及世界各国电压规律,自动倍压式在手动倍压式基础加以改进,实现了低电压国家输入电压的自动切换。自动倍压开关可以采用继电器、MOSFET、IGBT、可控硅。由于该设计应用在50-60Hz的工频条件下,考虑过零要求,以及生产成本。
选用可控硅作为开关切换器件。可控硅在成本上有着极大的优势,而响应速度又能满足要求。
3.系统结构及原理
电源基本指标:额定输出1200W,峰值功率2400W;输入电压可AC100-127V和220-240V;输出电压为DC160V.系统满足全球电压兼容的同时,兼具备低于0.3瓦的超低待机功耗能力。
3.1 系统结构
整机系统可分为主电源部分用来给功放部分提供电力。辅助电源提供初级控制电路和次级控制电路使用。控制器用来实现自动电压识别及倍压功能,同时结合MCU 《http://ic.big-bit.com/search_MCU_1_1.html》实现遥控唤醒系统功能。AC转DC的整流部分,辅助电源与主电源设计成独立供电方式。在待机模式中辅助电源脱离主电源整流部分,这样为低待机功耗提供了硬件基础。
3.2 主电源
3.2.1 主电源设计
主电源采用移相全桥拓扑。全桥电路易于实现大功率的输出,而移相全桥作为全桥电路的改良版本,在整机效率方面更具备优势。桥式电路中串入谐振电感,谐振电感与MOS管的寄生输出电容Coss之间谐振。从而在MOS管开启之间使得DS端电压为零,实现零压开启。因为实现了MOS管的零压开启,降低了驱动电路以及MOS管Qg常数的要求,使得器件成本也随之降低。使用双象可控硅作为倍压开关。单向可控硅可断开整个主电源的供电。当可控硅完全断开时,整个主电源电路上所有器件均无电流环路,除去可控硅本身极小的漏电流,主电路无功耗损失。
3.2.2 倍压结构和原理
倍压方式与手动倍压原理一致,当交流电压处于1、2象限时,电流流向为(红色轨迹):AC+ -》 D1 -》 CAP1 -》 K -》 AC-,电源给给电容CAP1充电,其电压将达到交流峰值;当交流电压处于3、4象限时,电流流向为(绿色轨迹):AC- -》 K -》 CAP2 -》 D4 -》 AC+.,电源给电容CAP2充电,其电压也将达到交流
- UCC28019A LED照明应用负载动态性能优化解决方案(09-21)
- 开关电源的EMC设计(09-15)
- 电路设计中的EMI、EMS和EMC(12-17)
- 浅谈无极灯镇流器(逆变器)的技术核心(03-23)
- 电磁兼容技术综述及开关电源中的EMC技术应用(06-17)
- MCM功率电源模块EMC的研究(11-29)