微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 基于FPGA和8051单片机IP核的多功能频率计的设计与实现

基于FPGA和8051单片机IP核的多功能频率计的设计与实现

时间:02-07 来源:互联网 点击:

  频率是电信号中重要的物理量,在电子、通信系统中,信号的频率稳定度决定了整个系统的性能,准确测量信号的频率是系统设计的重要内容。

  单片机广泛地应用于电子系统设计,其性价比高,大量的外围接口电路,使基于单片机的电子系统设计方便,周期缩短。然而,单片机的串行工作特点决定了它的低速性和程序跑飞,另外还存在抗干扰能力不强等缺点。EDA(Electronic Design Automation)技术以计算机为工具,在Quartus II软件平台上,对以硬件描述语言Verilog HDL/VHDL为系统逻辑描述手段完成的设计文件,自动地完成逻辑编译、化简、综合及优化、逻辑仿真,直至对特定目标芯片的适配、编译、逻辑映射和编程下载等工作,FPGA是纯硬件结构,具有较强的抗干扰能力。

  文中在FPGA芯片中嵌入MC8051 IP Core,作为控制核心,利用Verilog HDL语言进行编程,设计了以MC8051 IPCore为核心的控制模块、计数模块、锁存模块和LCD显示模块等模块电路,采用等精度测量法,实现了频率的自动测量,测量范围为0.1 Hz~50 MHz,测量误差小于0.01%。

  1 8051IP(Intelligent Property)软核

  8051单片机是以由VQM原码(Verilog Quartus Mapping File)表达的,在QuartusII环境下能与VHDL、Verilog HDL等其他硬件描述语言混合编译综合,并在单片FPGA中实现全部硬件系统。

  MC8051单片机核含有8位复杂指令CPU,存储器采用哈佛结构,其结构框图如图1所示。

  

  MC8051的指令系统与8051/2、8031/2等完全兼容,硬件部分也基本相同,例如可接64KB外部存储器,可接256字节内部数据RAM,含两个16位定时/计数器,全双工串口,含节省功耗工作模式,中断响应结构等。不同之处主要有:

  1)MC8051是以网表文件的方式存在的,只有通过编译综合,并载入FPGA中才以硬件的方式工作,而普通8051总是以硬件方式存在的;

  2)MC8051无内部ROM和RAM,所有程序ROM和内部RAM都必须外接。

  3)以软核方式存在能进行硬件修改和编辑;能对其进行仿真和嵌入式逻辑分析仪实现实时时序测试;能根据设计者的意愿将CPU、RAM、ROM、硬件功能模块和接口模块等实现于同一片FPGA中(即SOC)。

  4)与普通8051不同,MC8051的4个I/O口是分开的。

  MC8051核在接上了ROM和RAM后就成为一个完整的8051或8052单片机了,MC8051核实用系统的最基本构建顶层原理图如图2所示,主要由4个部件构成。

  

  1)MC8051核。CPU_Core即MC8051单片机核如图3所示,由VQM原码表述:CPU_Core.vqm,可以直接凋用。该元件可以与其他不同语言表述的元件一同综合与编译。

  

  2)嵌入式锁相环PLL50。其输入频率设置为50 MHz,MC8051能接受的工作时钟频率上限取决于FPCA的速度级别。

  3)程序ROM,LPM_ROM。采用ROM容量的大小也取决于FPGA所含的嵌入RAM的大小。设置的ROM容量是4k字节。此ROM可以加载HEX格式文件作为单片机的程序代码。HEX程序代码可以直接使用普通8051单片机程序编译器生成。

  4)数据RAM,LPM_RAM。本系统设置的LPM_RAM容量是256字节。高128字节须用间接寻址方式访问。

  2 等精度测频原理及FPGA设计

  等精度测量的一个最大特点是测量的实际门控时间不是一个固定值,而是一个与被测信号有关的值,刚好是被测信号的整数倍,即与被测信号同步。这样就达到了在整个测试频段的等精度测量。等精度测频的核心思想就是通过闸门的信号与被测信号同步,将闸门时间τ控制为被测信号周期长度的整数倍。测量时,先打开预置闸门,当检测到被测信号脉冲沿到达时,标准信号时钟开始计数。预置闸门关闭时,到达时才停止,完成被测信号整数个周期的测量。测量的实际闸门时间与预置闸门时间可能不完全相同,但最大差值不超过被测信号的一个周期。设实际闸门时间为τ,被测信号周期数为Nx,标准信号频率为fs、计数值为Ns,则被测信号的频率测量值为:

  

  由于实际闸门时间τ为被测信号周期的整数倍,因此Nx是精确的,而标准信号时钟的计数值Ns则存在误差△Ns(|△Ns|≤1),即标准信号计数的真实值应Ns+△Ns。

  由此可知被测信号的频率真实值为:

  

可以看出,相对误差与被测信号本身的频率特性无关,即对整个测量频率域而言,测量精度相等,因而称之为"等精度测量"。标准信号的计数值Ns越大,则测量相对误差越小,即提高门限时间τ和标准信号频率fs可以提高测量精度。在精度不变的情况下,提高标准信号频率可以缩短门限时间,提高测量速度。在计数允许时间内,同时对标准信号和被测信号进行计数,再通过

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top