单片机关键技术基础详解(五)
眼不能分辨42Hz以上的频率,所以PWM的频率应高于42Hz,否则人眼会察觉到灯的闪烁。
2.然后根据需要PWM的频率范围确定ATmega128定时/计数器的PWM工作方式。AVR定时/计数器的PWM模式可以分成快速PWM和频率(相位)调整PWM两大类。
3.快速PWM可以的到比较高频率的PWM输出,但占空比的调节精度稍微差一些。此时计数器仅工作在单程正向计数方式,计数器的上限值决定PWM的频率,而比较匹配寄存器的值决定了占空比的大小。PWM频率的计算公式为:
PWM频率 = 系统时钟频率/(分频系数*(1+计数器上限值))
4.快速PWM模式适合要求输出PWM频率较高,但频率固定,占空比调节精度要求不高的应用。
5.频率(相位)调整PWM模式的占空比调节精度高,但输出频率比较低,因为此时计数器仅工作在双向计数方式。同样计数器的上限值决定了PWM的频率,比较匹配寄存器的值决定了占空比的大小。PWM频率的计算公式为:
PWM频率 = 系统时钟频率/(分频系数*2*计数器上限值))
6.相位调整PWM模式适合要求输出PWM频率较低,但频率固定,占空比调节精度要求高的应用。当调整占空比时,PWM的相位也相应的跟着变化(Phase Correct)。
7.频率和相位调整PWM模式适合要求输出PWM频率较低,输出频率需要变化,占空比调节精度要求高的应用。此时应注意:不仅调整占空比时,PWM的相位会相应的跟着变化;而一但改变计数器上限值,即改变PWM的输出频率时,会使PWM的占空比和相位都相应的跟着变化(Phase And Frequency Correct)。
8.在PWM方式中,计数器的上限值有固定的0xFF(8位T/C);0xFF、0x1FF、0x3FF(16位T/C)。或由用户设定的0x0000-0xFFFF,设定值在16位T/C的ICP或OCRA寄存器中。而比较匹配寄存器的值与计数器上限值之比即为占空比。
二、 PWM应用参考设计
下面给出一个设计示例,在示例中使用PWM方式来产生一个1KHz左右的正弦波,幅度为0-Vcc/2。
首先按照下面的公式建立一个正弦波样本表,样本表将一个正弦波周期分为128个点,每点按7位量化(127对应最高幅值Vcc/2):
F(X) = 64 + 63 * Sin(2πx/180) X∈[0…127]
如果在一个正弦波周期中采用128个样点,那么对应1KHz的正弦波PWM的频率为128KHz。实际上,按照采样频率至少为信号频率的2倍的取样定理来计算,PWM的频率的理论值为2KHz即可。考虑尽量提高PWM的输出精度,实际设计使用PWM的频率为16KHz,即一个正弦波周期(1KHz)中输出16个正弦波样本值。这意味着在128点的正弦波样本表中,每隔8点取出一点作为PWM的输出。
程序中使用ATmega128的8位T/C0,工作模式为相位调整PWM模式输出,系统时钟为8MHz,分频系数为1,其可以产生最高PWM频率为: 8000000Hz / 510 = 15686Hz。每16次输出构成一个周期正弦波,正弦波的频率为980.4Hz。PWM由OC0(PB4)引脚输出。参考程序如下(ICCAVR)。
//ICC-AVR Application Builder : 2004-08
// Target : M128
// Crystal: 8.0000Mhz
#Include
#Include
#Pragma Data:code
// 128点正弦波样本表
Const Unsigned Char Auc_SinParam[128] = {
64,67,70,73,76,79,82,85,88,91,94,96,99,102,104,106,109,111,113,115,117,118,120,121,
123,124,125,126,126,127,127,127,127,127,127,127,126,126,125,124,123,121,120,118,
117,115,113,111,109,106,104,102,99,96,94,91,88,85,82,79,76,73,70,67,64,60,57,54,51,48,
45,42,39,36,33,31,28,25,23,21,18,16,14,12,10,9,7,6,4,3,2,1,1,0,0,0,0,0,0,0,1,1,2,3,4,6,
7,9,10,12,14,16,18,21,23,25,28,31,33,36,39,42,45,48,51,54,57,60};
#Pragma Data:data
Unsigned Char X_SW = 8,X_LUT = 0;
#Pragma Interrupt_handler Timer0_ovf_isr:17
Void Timer0_ovf_isr(Void)
{
X_LUT += X_SW; // 新样点指针
If (X_LUT 》 127) X_LUT -= 128; // 样点指针调整
OCR0 = Auc_SinParam[X_LUT]; // 取样点指针到比较匹配寄存器
}
Void Main(Void)
{
DDRB |= 0x10; // PB4(OC0)输出
TCCR0 = 0x71; // 相位调整PWM模式,分频系数=1,正向控制OC0
TIMSK = 0x01; // T/C0溢出中断允许
SEI(); // 使能全局中断
While(1)
{……};
}
每次计数器溢出中断的服务中取出一个正弦波的样点值到比较匹
- 单片机关键技术基础详解(四)(02-09)
- 单片机学习知识点全攻略(二)(05-12)
- 单片机学习知识点全攻略(完结篇)(05-21)
- 单片机学习知识点全攻略(三)(05-15)
- 单片机在电源设计中的应用(06-07)
- 基于单片机的锅炉液位控制装置设计(07-22)