微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > EMCCD图像传感器CCD97时序驱动电路的设计

EMCCD图像传感器CCD97时序驱动电路的设计

时间:03-18 来源:现代电子技术 点击:

  EMCCD ( E lectr on Mult iply ing Charg e Co upLEDDevice) 是新一代高质量微光成像器件。与传统CCD( Charg e Coupled Device) 相比, 它采用了片上电子增益技术, 利用片上增益寄存器使图像信息在电子转移过程中得到放大, 这使得它在很高的读出速率下仍具有相对很低的读出噪声, 能在微光源下高分辨力成像。

  EMCCD的这些特性使其在航天微光目标探测、微光生命科学成像、军用高性能夜视探测等领域具有极大的应用潜力。EMCCD 驱动电路是EMCCD 应用的核心技术, 其性能直接影响到成像质量。目前常用的时序产生方法有以下几种:

  ( 1) 直接数字电路驱动法。这种方法原理简单, 容易实现。但是逻辑设计较复杂, 调试非常困难, 而且在实际电路中因使用芯片较多, 为整个系统带来不可靠性。

  ( 2) MCU 驱动法。该方法是通过编程MCU 的I/ O端口来获得CCD 驱动脉冲信号的。这种方法的灵活性好, 精度也可以很高, 对不同的CCD 器件只需要修改程序即可。由于CCD 的驱动频率为MHz 级, 使得选用MCU 器件的工作频率必须很高( 提高了硬件成本) , 同时因频繁的中断和任务调度使MCU 效率很低。

  ( 3) EPROM 驱动法。这种驱动电路一般由晶体震荡器、计数电路和EPROM 存储器构成。这种驱动时序产生方法, 结构简单、明确, 调试容易, 缺点是结构尺寸太大, 对于实现复杂的驱动时序有较大困难。

  ( 4) 专用IC 驱动方法。这种方法就是利用CCD专用IC 来产生时序, 集成度高, 功能强, 使用方便。对摄像机等视频领域应用的CCD 或三元彩色CCD, 这种驱动方法是首选。一般由相应的CCD 厂家提供。

  另一种更有效的方法就是使用CPLD, FPGA 等大规模可编程逻辑器件实现。通过对该逻辑器件的编程,能实现任意复杂的时序逻辑, 且调试方便, 只使用一片集成电路以及少数外围器件, 故可靠性高。本文即采用这种方法, 实现了CCD97 所需的12 路驱动时序。

  1 CCD97 简介

  CCD97 是E2V 公司的背照式低照度CCD 图像传感器, 有效像素512 &TImes; 512, 像素大小16 μm &TImes; 16 μm, 它是帧转移型CCD, 芯片采用反向输出模式抑制暗电流,其灵敏度高, 噪声控制方面精益求精, 由于采用新的输出放大电路, 使它能在11 MHz 的像素读出速率下, 以低于1 电子/ 像素的超低噪声工作, 其量子效率高达92. 5%。它获取图像速度快, 具有正常CCD 和EMCCD双读出模式。在微光成像系统中更具有优越性, 能实现真正意义上的24 h 实时监控。

  2 驱动电路的设计

  2. 1 CCD97 驱动电路的要求

  成像区向存储区的转移波形如图1 所示。

  

  图1 成像区向存储区的转移波形

  信号电荷在增益寄存器中的转移波形如图2 所示。

  图2 为信号电荷在增益寄存器中的转移波形, 转移脉冲RΦ2HV 的高电平必须先于RΦ1 和RΦ2 到达, 同时RΦ1 和RΦ2 需要交替变化。

  

  图2 增益寄存器信号电荷转移时序相位关系

  帧转移时序如下:

  IΦ 与SΦ 为帧转移脉冲, RΦ1, 2, 3 为行转移脉冲。IΦ 与SΦ 的典型工作频率为1 MHz, R Φ 的工作频率为11 MHz。

  在I 1, 2 和I 3, 4 反向时序下, 将成像区图像信号逐行转移至存储区。需要转移的行数为512+ 8+ 8= 528。

  行转移时序图:

  与帧转移结束, 在转移时序R 1, 2, 3 以及R HV的时序作用下, 存储区的图像以行为单位进行转移, 逐像素通过移位寄存器组, 然后从读出放大器读出( EMCCD读出模式) , 其操作时序如图3 所示。

  

  图3行转移时序图

  CCD97 所需的电压和波形如表1所示。

  表1 CCD97 时序信号的电压需求

  

  由CPLD, FPGA 等可编程器件发生的时序逻辑冒充为TT L 型, 要想它能驱动CCD97 工作, 必须按照表1进行电平转换。

   2. 2驱动电路的设计:

  该系统选用的FPGA 芯片为Altera 公司Cyclone系列的FPGAEP1C3T 100, 其有100 个管脚封装, I/ O的电源为3. 3 V , 内核电压为1. 5 V, 有1 个锁相环( PLL) , 2 个专用全局时钟输入管脚CLK0、CLK1, 5 个双重用途时钟管脚DPCLK。EP1C3T100 是SRAM 型的可编程逻辑器件, 本身并不能固化程序,因此需要通过一片FLASH 结构的配置芯片来存储逻辑配置信息。

从Altera 公司提供的数据手册, 可知Cy clo ne 系列的FPGA 仅支持EPCS1, EPCS4 以及EPCS16。而选用的EP1C3T 100 中, 其原始二进制文件大小为627 376 b, 使用EPCS1( 1 048 576 b) 的配置芯片。使用EPCS 配置芯片在主动串行模式( A S) 下( MSEL[ 0. . 1] 置

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top