微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 智能芯片市场格局一变再变 TPU将成深度学习的未来?

智能芯片市场格局一变再变 TPU将成深度学习的未来?

时间:04-19 来源:半导体行业观察 点击:

了类似的想法,实际上,这些技术现在依然在机器学习的流程中被采用。"能够加快线性计算能力总是非常有用的。"Dean强调。

姑且不考虑硬件方面的影响,依然存在着许多能够吸引用户的地方。与那些始终保持机密的项目不同,未来,谷歌将会将TPU技术运用到谷歌云平台。谷歌的高级研究员Jeff Dean表示,他们不希望通过各种手段来限制竞争,希望能够为TPU提供更多的可能与空间,这样在未来才能够与Volta GPU以及Skylake Xeons竞争。

Dean认为,平台也应当为开发者提供更多能够建立和执行各自特有模型的机会,而不是限制开发者的思维。未来,谷歌将会在云平台上为那些对开放的科研项目感兴趣并不断推进机器学习的研究团队提供超过1000个TPU。

Dean表示,现在在谷歌内部,在进行机器训练和学习的时候,也会同时采用GPU和CPU,在同一设备上也是如此,这样能够更好的保证平衡。但是对于新一代的TPU芯片,目前来说,训练和学习时候的功率还不能够准确的估计,但是值得肯定的是,功能肯定是低于Volta GPU。由于系统在功能上能够满足高性能计算和64位高性能计算,这就使得工作负载的计算异常复杂。英伟达的GPU在使用过程中也会遇到类似的问题。未来,想要更好的解决这一问题,需要我们跟工程师继续努力。

在这一点上,Dean也承认:"与第一代TPU芯片整数计算的方式不同,第二代芯片能够进行浮点运算。所以在芯片进行学习训练的过程中,只需要采用固定的模型即可,不需要变动算法。工程师可以采用相同的浮点运算方式,这在很大程度上降低了工作量。"

除了英伟达和英特尔之外,谷歌将其定制的硬件产品推向市场,对于企业来说未尝不是一件好事。因为TPU来说对于市场来说还是相当边缘化的技术。当第二代TPU产品应用到谷歌云平台之后,谷歌将会向大量的用户推送培训,这将会更好的推动这一技术的发展。

对于哪些对于谷歌为什么不将芯片进行商业化的人来说,以上的内容大概能够给出一个回答。随着人工智能和神经学习技术的不断发展,TPU将能够在谷歌云上大展拳脚,成为推动技术进步的一大力量。

TPU对谷歌意味着什么?

谷歌专门开发的应用于深度神经网络的软件引擎。谷歌表示,按照摩尔定律的增长速度,现在的TPU的计算能力相当于未来七年才能达到的计算水平,每瓦能为机器学习提供更高的量级指令,这意味它可以用更少的晶体进行每一个操作,也就是在一秒内进行更多的操作。并且谷歌将其与Deep learning系统平台TensorFlow进行了深度绑定,可以获得更好的支持,做更强的生态,包括搜索、无人驾驶汽车、智能语音等100多个需要使用机器学习技术的项目。

TPU 是深度学习的未来吗?

深度学习计算中的芯片部署都不是零和博弈。现实世界的深度学习网络需要系统的 GPU 与其他 GPU 或诸如 Google TPU 之类的 ASIC 通信。GPU 是理想的工作环境,具有深度学习所需的灵活性。但是,当完全专用于某个软件库或平台时,则 ASIC 是最理想的。

谷歌的 TPU 显然符合这样的要求。TPU 的卓越性能使得 TensorFlow 和 TPU 很可能是一起升级的。虽然谷歌官方已经多次明确表示,他们不会对外销售 TPU。不过,利用 Google 云服务做机器学习解决方案的第三方可以得益于 TPU 卓越性能的优势。

智能芯片市场格局一变再变,谷歌 TPU 的出现让面向神经网络/深度学习特定领域加速的芯片趋势更加明显。高端 AI 应用需要强大的芯片做支撑。软硬件缺了哪一块中国的智能生态也发展不起来。中国处理器学术和工程都在不断提高,我们期待中国芯早日出现在世界舞台与国际同行竞技。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top