微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > LED热管是什么,有何意义?LED调光实践与反馈

LED热管是什么,有何意义?LED调光实践与反馈

时间:04-22 来源:网络整理 点击:

  什么是LED热管?它有何意义?

  LED的热管理技术包括芯片、封装和系统集成方面的热管理。芯片方面,人们努力的提高材料的结晶质量或设计新型结构,来提高芯片本身的内外量子效率,比传统的低导热率的蓝宝石衬底芯片热阻更小。

  芯片(量子效率;功率密度;热流扩展;衬底材料等)

  LED热管理 封装(封装材料;封装结构;封装工艺等)

  系统集成(制冷技术;材料;工艺等)

  LED散热结构说明(插图路径:使用插图\ LED散热结构说明)

  1、 LED散热的必要性(散热问题是当前半导体照明技术的技术瓶颈)

  LED是个光电器件,其工作过程中只有10%~40%的电能转换成光能,其余的电能几乎都转换成热能,使LED的温度升高。LED温升是LED性能劣化及失效的主因。LED结温上升,导致发光效率降低,可靠性差,使用寿命降低及发热量增大等。

  2、 解决方法

  LED热管理概况

  (A) 改进LED芯片、封装的结构和材料——上中游产业完成

  (B) 系统集成,主要针对灯具散热方式,提高换热功率——散热设计的工作

  3、 LED灯具散热结构剖析

  芯片(节点温度控制在《85℃)—(热阻小的产品有利于散热)—灯珠基板——铝基板(增加覆铜面积有利于热量传导)—(使用导热硅胶)—散热器壳灯(良好的结构便于空气对流)——周围环境

  LED调光的几个小要点:

  LED的发光原理同传统照明不同,是靠P-N结发光,同功率的LED光源,因其采用的芯片不同,电流电压参数则不同,故其内部布线结构和电路分布也不同,导致了各生产厂商的光源对调光驱动的要求也不尽相同,因此控制系统和光源电器不匹配也成了行业内的通病,同时LED的多元化也对控制系统也提出了更高的挑战。如果控制系统和照明设备不配套,可能会造成灯光熄灭或闪烁,并可能对LED的驱动电路和光源造成损坏。

  市场上有五种LED照明设备控制方式:

  1. 前沿切相(FPC),可控硅调光

  2. 后沿切相(RPC)MOS管调光

  3. 1-10V调光

  4. DALI(数字可寻址照明接口)

  5. DMX512(或DMX)调光

  前沿切相控制调光

  前沿调光就是采用可控硅电路,从交流相位0开始,输入电压斩波,直到可控硅导通时,才有电压输入。其原理是调节交流电每个半波的导通角来改变正弦波形,从而改变交流电流的有效值,以此实现调光的目的。

  前沿调光器具有调节精度高、效率高、体积小、重量轻、容易远距离操纵等优点,在市场上占主导地,多数厂家的产品都是这种类型调光器。前沿相位控制调光器一般使用可控硅作为开关器件,所以又称为可控硅调光器。

  在LED照明灯上使用FPC调光器的优点是:调光成本低,与现有线路兼容,无需重新布线后沿切相控制调光。劣势是FPC调光性能较差,通常导致调光范围缩小,且会导致最低要求负荷都超过单个或少量LED照明灯额定功率。因为可控硅半控开关的属性,只有开启电流的功能,而不能完全关断电流,即使调至最低依然有弱电流通过,而LED微电流发光的特性,使得用可控硅调光大量存在关断后LED仍然有微弱发光的现象存在,成为目前这种免布线LED调光方式推广的难题。E-Linker易联专业研发的前沿切相LED调光驱动很好的解决了这个问题,通过驱动电路的"C-TURN OFF"技术优化避免"关不断"和"频闪坏灯"等难题。匹配E-Linker易联前切相LED调光驱动的各类灯具可以与其他可控硅调光系统完美匹配,为用户节省了线材及布线工时,解决了可控硅LED调光匹配性及不可关断的混乱格局。  
 

        后沿切相控制调光

  后沿切相控制调光器,采用场效应晶体管(FET)或绝缘栅双极型晶体管(IGBT)设备制成。后沿切相调光器一般使用MOSFET做为开关器件,所以也称为MOSFET调光器,俗称"MOS管"。MOSFET是全控开关,既可以控制开,也可以控制关,故不存在可控硅调光器不能完全关断的现象。另MOSFET调光电路比可控硅更适合容性负载调光,但因为成本偏高和调光电路相对复杂、不容易做稳定等特点,使得MOS管调光方式没有发展起来,可控硅调光器仍占据了绝大部分的调光系统市场。

与前沿切相调光器相比,后沿切相调光器应用在LED照明设备上,由于没有最低负荷要求,从而可以在单个照明设备或非常小的负荷上实现更好的性能,但是,由于MOS管极少应用于调光系统,一般只做成旋钮式的单灯调光开关,这种小功率的后切相调光器不适用于工程领域。而诸多照明厂家应用这种调光器对自己的调光驱动和灯具做调光测试。然

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top