汽车内电磁干扰现象与减小汽车对无线电干扰的措施
时,会产生反向瞬变 电压U c,线圈初始储能越大,关断速度越快,瞬变过电压就越高。一般U c为一100~300V;t s为0.2~0.5s。这类于扰虽然不具有连续性,但是它的瞬变电压的幅值相当大,会对电子模块造成严重影响,甚至损坏。发电机调节器击穿损坏就是因这种 反向瞬变电压造成的严重后果。
(2)静电放电对车内电子部件的干扰。遇到导体就会释放出来。当静电储存到一定程度后,会通过空气放电,甚至会有火花产生,人们就会有强烈的放电感觉在使 用汽车时,这种静电放电现象不可避免地会产生静电放电的干扰特点是:高电压、短时间、微小电流。其干扰影响程度是巨大的,会使一些电子控制单元产生误动 作,严重的会损坏电子单元。
(3)部件或线缆间的相互耦合干扰。汽车中经常将各种线缆捆绑成一束沿汽车内侧布置,电源线中的瞬变干扰会祸合到信号线或控制线中,形成差模信号,会对车内ECU等电子模块产生影响。
(4)辐射干扰。干扰能量的电磁波辐射形式,频率范围是150kHz~1000MHz。 汽车电子设备的EMI干扰源有:①点火系统,其十扰在接收机音频中表现为有韵律的爆声或滴答声,且音调直接与引擎速度有关,当引擎负载增大时干扰幅度也增 大。通常解决点火噪声的方法是安装电阻火花塞和线。目前,大多数汽车都标配电阻火花塞和线。通常更换新的火花塞和线将有助于减小噪声,因为很多噪声都源于 点火系统元件故障。②充电系统,包括交流发电机,由固态稳压器控制。由于交流电在交流发电机中仅被整流,未被滤波,输出存在纹波。充电系统噪声通过汽车布 线传到设备,影响接收机和发射机的音频部分。该噪声可以从接收机音频或者发射信号中的呜呜声来辨别,更准确的方法是将充电系统暂时断开。充电系统噪声的音 调、强度与引擎速度和充电系统负载有关。当开灯时充电系统负载增大,可以发现呜呜声更大。这时应检查交流发电机与电池的连线是否腐蚀或者接触不良,及固态 稳压器是否良好如都正常,则用0.47μF和0.01μF电容并联,接到输出与地线间进行滤波。
由于汽车使用了多个不同的电动机,这些电动机有可能产生EMI,很难从干扰声中判断出是哪个的问题。一般表现为劈啪声,也有类似于充电系统的呜呜声。电动机干扰的诊断要借助于专门的仪器。干扰不仅可以传导,而且还可能辐射,所以,要在干扰源附近就近滤波处理。
汽车中使用的微处理器(单片机)需要由时钟驱动。时钟产生电路是一个振荡电路,由于振荡波形为方波,其谐频丰富,可以延展到很高的频率,所以接收机很可能 被等频率间隔的干扰信号所影响,或者可以在整个波段听到宽带的数字噪声。可以使用接收机调到干扰频率,去探测是哪块控制板出现了问题,然后采取增加屏蔽罩 或将屏蔽罩妥善接地的方法减轻干扰,另外,在导线上套上磁环也有助于减轻干扰。汽车的电子设备会影响无线电设备,发射设备也会影响到汽车的电子设备。需确 保电源线、天线馈线与汽车的布线和电子系统越远越好。正确安装天线,最好在车顶上或车的后部。尽量使大线系统的驻波比(SWR)最低。检查天线馈线屏蔽是 否良好,屏蔽网是否足够密。
3.无线电干扰的分类及成因
无线电干扰指在射频(9kHz~3000GHz)频段内,无线电干扰按干扰源的性质分为自然于扰(来自自然现象,是无法控制的)和人为干扰(来源于机器或其他人下装置,是可控制的)。人为干扰又可区分为无线电设备干扰和非无线电设备干扰两类。
非无线电设备干扰包括工业、科研、医疗等电器设备干扰,电力线干扰等无线电设备干扰主要有:
(1)同频干扰。凡由其他信号源发送出来,与有一用信号的频率相同并以同样的方法进入收信机中频通带的干扰,都称为同频干扰。当两个信号出现载频差时,会 造成差拍干扰;当两个信号的调制度不大或存在相位差时也会引起失真干扰。干扰信号越大,接收机的输出信噪比越小。当干扰信号足够大些,可造成接收机的阻塞 干。扰这种干扰,大都是由于同频复用距离太小造成的。
(2)令频干扰。凡是在收信机射频通带内或通带附近的信号,经变频后落入中频通带内所造成的干扰,称为邻频干扰。这种干扰会使收信机信噪比下降,灵敏度降低;强干扰信号可使收信机出现阻塞干扰。这种干扰,大部分是由于无线电设备的技术指标不符合国家标准造成的。
(3)带外干扰。发信机的杂散辐射和接收机的杂散响应产生的干扰,称为带外干扰。
①发信机的杂散辐射干扰。在VHF和UHF的低频段,移动通信设备尤其是基站的发信机大都采用晶体振荡器以获得较高的频率稳定度。
- 混合集成电路的电磁兼容(EMC)设计 (10-07)
- PCB布线技术中的抗干扰设计(03-08)
- 开关电源的EMC设计方案(12-21)
- 自激式开关稳压电源的工作原理及功能设计(01-13)
- 开关电源电磁干扰的抑制措施(07-02)
- 电源管理的开关频率与电磁干扰之间的平衡(02-26)