技术分析:AFS系统步进电机控制和关键诊断
步进电机分为变磁阻(VR)、永磁(PM)和混合型(Hybrid)步进电机,在车用环境中,最常用的是永磁型步进电机,其转子是永磁体。在汽车应用环境中,也有许多场合需要用到步进电机,如AFS前大灯水平位置调节、弯道调节和光线几何形状调节,都需要用到步进电机作为执行器。图1是典型的AFS系统示意图。图2是英飞凌针对AFS应用的芯片组解决方案。
英飞凌作为领先的汽车半导体提供商,为解决汽车步进电机控制和驱动问题,研发了步进电机专用控制芯片TLE4729G。这颗控制器具有一系列优异的性能,被大多数零部件供应商在系统集成中采用。
英飞凌在提供TLE4729G基本的数据手册之外还提供了多篇应用笔记以方便客户快速对系统进行设计,本文在评估板基础上对步进电机系统和诊断要点进行了阐述和说明,是对英飞凌步进电机控制技术支持的一个补充。TLE4729G用于控制、驱动两相步进电机的智能功率器件,其内部结构如图3所示。其中,与应用相关的重要端口说明如表1所示。
步进电机驱动原理和PWM调制
步进电机的运行方式包括全步、半步和微步运行三种方式。TLE4729G支持全步和半步运行这两种方式,支持微步运行方式将会很快面市。此处主要介绍步进电机全步和半步两种运行方式。
全步模式下,步进电机的两个绕组同时充磁,根据充磁电流的方向变化,分为四个状态,设A相绕组的正向电流为A+,则负向电流为A-,如图4所示为步进电机的四个状态1、2、3、4。
半步模式下,步进电机的两个绕组会出现四个额外的状态,其中一绕组充磁时,另外一绕组不充电,即没有电流通过。因此,在步进电机半步模式下有8个状态,如图5所示为步进电机的八个状态1、2、3、4、5、6、7、8。
TLE4729G具有电流设置管脚,在全步模式下,两个半桥中流过的电流可以设为一样,不同的电流大小设置对应不同的电流运行模式:全速模式,额定模式,保持模式和零电流模式。在全步模式下,设定电流模式后,步进电机的换相只和Phase1和Phase2有关。具体时序参考图6,根据图6可以得出换相表,如表2所示。
TLE4729G的控制方法为电流控制,在半步模式下,由于出现某项绕组零电流的情况,需要用到电流设置管脚构成换相表,和全步模式不一样的是在状态切换即换相过程中电流设置管脚的值是变化的。具体时序参考图7所示,根据该图可以得出半步换相表,如表3所示。
步进电机峰值电流控制原理和换相分析#e#
步进电机峰值电流控制原理和换相分析
由TLE4729G内部结构可以知道,其功率级输出为两个全桥,为了分析步进电机换向过程中的电流行为和峰值控制原理,取出其中一个全桥进行分析。图8是输出Q11 、Q12构成的全桥换相过程中的电流时序图,设Q11、Q12上的负载为步进电机绕组A。换相发生在Phase信号由低变高的时候,此时流过绕组A的电流方向改变。
当Phase=L时,设此时的相电流为正,如图9所示,有三种开关状态S1、S2、S3三种状态,其中S1和S2是正常工作状态,S3是换相发生时的过渡状态;S1时T12和T13导通,电流流向为正,此时电感电流线性增加,采样电阻上有电流流过,当电感电流增加到Iset时,T13关断,此时电感电流线性下降,电流波形表现为三角波,这种限流方式称为峰值限流方式,这期间取样电阻上没有电流通过,T13工作在PWM斩波方式下;当换相命令发生即Phase=L变化为Phase=H时,T12和T13必须先关断,此时T11和T14尚未导通,电流方向仍未发生变化而是线性减小,通过D11和D14续流,这个时候流过取样电阻上的电流为负,故取样电压对地表现为负。
当Phase=H时,设此时的相电流为负,如图9所示,有三种开关状态S4、S5、S6三种状态,其中S4和S5是正常工作状态,S6是换相发生时的过渡状态;具体开关过程如图9所示,分析方法同上文,同样存在上管导通,下管PWM控制和二极管续流的过程。
诊断
诊断在汽车电子中必不可少,这是汽车安全性的必然要求。TL4729G支持过热、开路和短路诊断。客户在使用TLE4729G时碰到的大多数问题也集中在开路诊断上。TLE4729G的诊断表如表4所示。在全步模式下和半步模式下,由于换相的差异,导致了开路诊断信号有差异。在某些半步换相表下,甚至出现不能诊断的情况。
从表4可以看出,短路到地和开路错误同时发生时,诊断结果和短路到地是一样的,因此可以认为短路到地的优先级比开路错误高。
开路诊断的原理是利用感性负载续流的原理。如图10所示,一般来说,每次换相的时候,内部SR触发器置位,置位信号
- 汽车AFS的电机驱动方案及应用设计要点(03-15)
- 开关电源的EMC设计(09-15)
- 电路设计中的EMI、EMS和EMC(12-17)
- 浅谈无极灯镇流器(逆变器)的技术核心(03-23)
- 电磁兼容技术综述及开关电源中的EMC技术应用(06-17)
- MCM功率电源模块EMC的研究(11-29)