浅析便携式医疗设备中的信号调整
现今的医疗便携设备方便病人自行诊疗、自由走动,甚至可在外出时使用设备。便携式电子医疗设备要实现"方便携带"的特色功能,就必须具备微型化和低功耗的特性。
此外,这些设备还要有极高的精度以确保病人的安全。医疗设备采用多种不同的传感器来监视病人的健康状况,然后传感器将生理信号转换成电子信号供电子设备分析使用。由于医疗设备中传输的信号都比较微弱,而且还会受到诸多噪声源的干扰,因此信号路径设计对便携式医疗设备就显得格外重要了。本文将针对心电图机和血糖测量仪这两种设备应用,讨论如何将传感器与匹配的PowerWise放大器相连接,以便延长电池寿命和提高诊疗安全性。
心电图机的操作原理
心电图机(ECG)可实时记录病人的心跳活动。心跳信号是通过三个连接到病人身体的电极测量出来。图1所示为其中一个电极输出的ECG信号,图中包含有五个测量点,分别是Q、P、R、S、和T,这些测量点可用来诊断病人患上心脏病的可能性。
从电极收集回来的信号处于在400μV到最高5mV的范围内,并在0.05Hz 和100Hz 下带有3dB转角频率。这类信号一般都会受到不少的干扰,例如电极的接触噪声、电源线路噪声(50MHz)、呼吸、肌肉活动、以及来自其他电子器件的干扰。
ECG的信号调整
正如上述所说,ECG的信号路径必须能调理不同来源的噪声。对抗直流电噪声,可以使用高通滤波器。然而,最令人头痛的是50Hz的噪声,因为它刚好与我们收集的信号频率处于相同范围。要消除这个共模噪声,需要建立一个测量仪表放大器。这个配置之所以很理想是因为它可在抑制共模电压的同时放大有用的差分信号,这利于把微弱的有效信号从背景噪声中分隔出来。正如图2所示,这个仪表放大器是用LMP2234(四通道、微功率、高精度的RRO运算放大器)和高精度的电阻器(0.1%)实现出来。
A1, A2, A3, A4: LMP2234
R1, R2: 2 MΩ
R3, R5: 40 kΩ
R4: 20 kΩ
R6, R7: 10 kΩ
R8, R9: 10 kΩ
R10, R11: 20 Kω
LMP2234 是用VIP50工艺技术制成,即绝缘硅BiCMOS工艺。用这种工艺制作出来的超低功耗放大器非常适合电池供电的低功耗应用。该工艺具有1.8到5.5V 的操作电压范围和36μA的静态电流,利于延长便携系统中电池的寿命。LMP2234是LMP高精度放大器家族的成员,其高阻抗CMOS输入使它成为测量仪表和其他传感器接口应用的理想选择。
由于来自电极的信号幅度极低,放大器的直流参数便显得很重要。LMP2234的最高偏移电压为 150V(典型值为10 V),而偏移电压漂移温度系数和偏置电流分别仅为0.3 μV/℃和±20 fA。这些高精度的严格规格使LMP2334在维持系统常精度和长期稳定性方面有相当出色的表现。
这个测量仪表放大器包含有两个级。最后一个级(亦即输出级)是一个差分放大器,它能够拒绝直流电平以及同时影响两个输入的干扰和噪声电压源。由两个放大器组成的第一级(亦即是输入级)则被配置成一个可将输入隔离的缓冲器。可是,基于放大器间的失配使它们彼此不能相互连接,所以要在两个放大器之间加装平衡电阻。将两个级的增益相乘便可得出测量仪表放大器的增益。理论上,共模抑制比(CMPR)应该是无限大,但由于出现电阻失配,导致输出级的非零共模增益非常小。在电路的输入级中,流经所有电阻的电流是一样的。这都有赖于LMP2234具有高输入阻抗和低输入偏置电流的特点。
输出电压被定义成:
输入信号的最大幅度仅为5mV,但为了建立增益,我们必须考虑到电极的直流偏移电压,它有时甚至可高至±300mV。LMP2234的轨到轨输出可从电源电压轨摇摆至15mV,从而增加了系统的动态范围。此外,由R10和R11组成的偏置分压器可提供一个电压,该电压恰好等于正确诊段病人体征所需电源电压的一半。
正如图3所示,会采用一个高通滤波器来抑制能够引致下一个增益级饱和的直流器件。这个高通滤波器的截止频率为0.5Hz。该滤波器采用二阶Sallen Key型的 Butterworth 拓扑技术来实现。至于第二级是一个低通滤波器,其拥有100Hz的截止频率和100的增益,并且同样以Sallen Key 拓扑来实现。诸Sallen Key 类的模拟滤波器是围绕着有电阻器和电容器的运算放大器而建立。当中没有采用电感器是因为它体积过大、笨重和不够完美。
C1: 1 μF R3: 5.36 kΩ
C2: 220 nF R4: 14.3 kΩ
R1: 1.24 MΩ C3: 33 nF
R2: 365 kΩ C4:
- 应可穿戴保健设备大势 ADI最新解决方案详解(02-11)
- 便携式医疗电子装置的设计考虑(06-16)
- 远程医疗监护技术在平板电脑中的应用(06-15)
- RFID腕带在医疗物联网中的应用(06-16)
- 浅谈手持设备(PDA)在临床中的应用(06-15)
- 智能化的便携式流感诊断系统设计方案(06-16)