微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 电力线载波通信的外围电路设计

电力线载波通信的外围电路设计

时间:11-13 来源:电子科技 点击:

  摘要:低压电力线传输特性的复杂性和传输过程中干扰信号的多变性,使其推广受到限制。文中依据高低频电路原理,结合现代通信与数字信号处理技术,设计了电力线载波通信的外围专用电路,包括发送驱动电路、耦合接收和AGC系统等,较好地解决了载波信号的接收与发送问题。

  关键词:电力线载波通信;耦合;AGC系统

  电力线载波通信由于其潜在的经济效益和广阔的应用前景备受关注,但由于低压电力线传输特性的复杂性和传输过程中干扰信号的多变性使其推广受到限制。低压电力线载波通信模块包括发送放大电路、耦合接收和ACE系统、滤波单元、调制解调芯片等,如图1所示。其中所设计的滤波单元、调制解调单元集成芯片。针对电力线通信中,可供选择的通信频率在60~150 kHz,载波频带带宽为4kHz、传输信息量少、时延要求不高,而抗干扰要求较高等特点,依据高低频电路原理和数字通信原理,设计了电力线载波通信模块外围专用电路、发送放大电路、耦合接收和ACE控制电路,较好地解决了载波信号的接收与发送问题。

  

  1 发送放大耦合电路的设计

  本部分外围电路完成调制信号发送前的调整放大和耦合功能。由于FPGA的管脚最高输出电平为3.3 V,而信号在经过发送和接收的耦合,在电力上传输后衰减较大,因此调制后的信号还需进行适当放大,然后才能耦合劐电力线上。发送放大及耦合电路如图2所示。

  

  测量表明,电力线的阻抗分布在0.5~80 Ω之间,其阻抗主要依赖于用电负荷的大小、线路结构以及配电变压器阻抗等多种因素。由于配电线路结构和配电变压器的阻抗特性相对较稳定,因此,用电负荷的大小对电力线阻抗的变化影响较大。

  由于甩电负荷具有随机性,其主要表现为在不同的时间,用电负荷发生变化,即阻抗的时变性。研究电力线的输入阻抗,对于提高信号的发送功率和有用信号的输入功率,在分析发送电路中,设定电力线的输入阻抗为5 Ω具有典型意义。

  在与电力线的接口电路中,使用大功率稳压管和电阻组成限幅电路,起保护作用。它能避免系统受到 诸如强雷电脉冲等瞬时过电压的干扰。

  发送电路主要由功率放大器组成。功率放大器的作用是将PSK_OUT输出的方波信号进行功率放大。为提高发送功率,采用输出级为异型复合管单电源准互补乙类推挽电路。前级放大采用9014和9015对管,D5和D6两个5.1 V的稳压管起保护作用,防止三极管反向击穿。后级由于电流比较大,采用耐电流比较大的2SA1015和2SA1815对管;同样,来自线路上的载波信号经过线圈耦合到载波接收电路中,D4双向稳压二极管起保护作用,防止大电压损害器件,耦合线圈比较重要,要选择10:15的线圈。接插件高压和低压分开,高压部分时220 V构接口,低压按照管脚顺序分别是PSK_OUT、GND、VHH和PSK_IN。

  耦合电路的设计目的是为了利用电力线实现可靠的载波通信,其分析与设计是问题的关键。其难点在于:(1)要求载波信号的加载效率高。(2)要求电力网50 Hz的工频信号不能给载波通信系统带来太大的干扰。设计一个能有效减小低压电力线的低阻抗影响的功率匹配和增益平衡电路,用于将信号耦合到电力线上,其传输频带为0.1~30.0 MHz。为实现网络信号的最大功率传输,该电路设计时须考虑220 V线路侧的阻抗特性,T100为信号耦合变压器,220 V线路侧阻抗约取30 Ω。然后确定线圈初级的匝数比或阻抗比。最后设计功率放大器的输出匹配电阻。

  为防止低压电力线上的雷电和开关瞬态作用,对电路元器件造成永久性损坏,需采用特殊的保护措施。如图2耦合部分所示,变压器对于100~400 kHz的扩频载波信号提供了一个线性的传输功能,电容的作用是阻止50 Hz的工频进入变压器T,限制了变压器电流,以避免变压器铁芯饱和。输入通道应接一个浪涌保护二极管5KP18C,经电阻隔离后接二极管箝位电路输出给前级滤波电路。由于电力线上负载发生变化时,电力线会产生较大噪声甚至幅值很大的尖峰脉冲,该脉冲经耦合后,会给后级电路带来较大危害。因此加入一个浪涌保护二极管后,可以很好地滤除这种噪声,保护后级电路。后面接两个二极管用于过压保护。

  2 AGC电路设计

  自动增益控制电路被称为AGC。对于接收机接收到的外来信号场强并非恒定不变,为保证接收机终端得到相同的电压,通常采用改变放大器增益来实现。AGC电路就能在信号场强变化情况下,保证接收机的输出电压基本不变。

设计为将滤波器输出的mV级信号放大约40 dB,需要特别注意小信号的不失真放大。AGC主要完成对小信号的放大,需额外注意

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top