微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 传输系统中的时钟同步技术

传输系统中的时钟同步技术

时间:02-11 来源:不详 点击:
抖动对收发器的影响
  理想情况下,数字信号是在两个相邻电平转换点的中点进行采样的。抖动之所以会造成误码,是由于相对于理想中点,它改变了信号的边沿转换点。误码可能由于信号流边沿变化太晚(在时间上比理想中点晚0.5UI(单位间隔相当于信号的一个周期))或太早(在时间上比理想中点早0.5UI)所致。当时钟采样边沿在信号流的任何一侧错过0.5UI 时,将出现 50% 的误码概率,假设平均转换密度为 0.5。7如果分别知道确定性抖动和随机抖动,可通过上述两个数字和将峰到峰抖动值与均方根抖动值联系在一起的表,来估计误码率。校准抖动,定义为数字信号的最佳采样时刻与从其提取出来的采样时钟之间的短期变化,可以造成上述误码。对于商业应用,源时钟和源发射接口抖动规范将远远低于 1UI。
  发射接口抖动规范通常与接收端的输入抖动容限相匹配。对于抖动测量回路滤波器截止频率,尤其如此。例如,在 SDH 系统中,有两种抖动测量带宽,分别规定:一个用于宽带测量滤波器(f1 到 f4),一个用于高频带测量滤波器(f3 到 f4)。数值 f1 指可在线路系统的 PLL 中使用的输出时钟信号的最窄时钟截止频率。低于此带宽的频率的抖动将通过系统,而较高频率的抖动则被部分吸收。数值 f3 表示输入时钟捕获电路的带宽。高于此频率的抖动将导致校准抖动。校准抖动造成光功率损失,需要额外光功率以防各种恶化。因此限制发射机端高频带频谱的抖动十分重要。
  漂移对收发器的影响
  市场上销售的大多数电信接收机都使用了一个缓冲器,以适应线路信号中存在的随机波动。下面框图6详细表示出这一概念。恢复时钟将数据送入富有弹性的缓冲器,而系统时钟则将数据送出到设备的核心部位。
  在准同步传输系统中,发射机和接收机工作在相互独立而又极为接近的频率上,fL和 Fs分别表示发射机和接收机的频率。当两者之间存在相位或频率差异时,弹性存储会将其消除,否则缓冲器将出现欠载或溢出(取决于差异的幅度和弹性缓冲器的大小),造成一次可控的帧滑动(基本速率传输)或一次位调整(高阶异步多路复用器)。
  在准同步应用中,根据可接受的缓冲滑动对频率变化和缓冲器深度进行了标准化。最初的网络主要用于语音传输,在一定的频率门限之下不会造成语音质量下降。ITU-T 规范规定该变化为  +/-50ppm。但是随着网络开始传送压缩语音、传真格式的数据、视频以及其他种类的媒体应用,对于差错和重传以及刚刚兴起的同步网络,滑动使效率严重下降。
  在同步传输系统中,系统时钟通常同步到用于接收更高时钟等级信号的接口的恢复时钟上。恢复时钟和系统时钟之间相位和频率的瞬时和累积差异将被弹性缓冲器吸收,否则将导致弹性存储器溢出/欠载(取决于缓冲器大小和变化的幅度),造成指针调整而延迟或提前帧传输、帧滑动或系统中某处出现位调整。
  在同步系统中,所有网络组件工作在同一平均频率,可以通过指针机制消除帧恶化。这些指针机制将提前或延迟有效载荷在传输帧中的位置,从而调整接收和系统时钟中存在的频率和相位变化。SDH 收发器中的缓冲器比 PDH 收发器中的要小,而且对于 SDH 系统中可能导致的指针移动等不规则性有限制。因此,与 PDH 系统相比,同步系统的要求更为严格。由于网络发展的历史和不同网络之间的互操作连接,在某些阶段或其他阶段,这些同步网络会通过准同步网络来连接。因此 PDH 网络的时钟体系结构也要考虑在内。
  MTIE 提供了时钟相对于已知理想参考时钟的峰值时间变化。在同步传输和交换设备的弹性缓冲器的设计中将用到 MTIE 值。在弹性存储中,缓冲器填充水平与输入数字信号和本地系统时钟之间的 TIE 成正比。确保时钟符合有关 MTIE 的时钟规范,将保证不会超过一定的缓冲器门限。因此,在缓冲器设计中,其大小取决于 MTIE 的规定极限。


图6,典型传输系统的接收机接口


  系统时钟输出相位扰动对收发器的影响
  一个时钟的输出相位变化可以通过分析其 MTIE 信息获得。漂移产生(在自由振荡模式和同步模式中)主要指系统中所用时钟振荡器的长期稳定性,在自由振荡模式中系统的稳定性仅受振荡器的稳定性影响。除了漂移产生之外,输出时钟相位还受到大量系统不规则特性的影响。
  特别是对一个系统同步器而言,将参考源从一个不良或恶化参考时钟转换到一个正常参考时钟可能会导致输出相位扰动。传输用高速 PLL 中使用的传统 VCO(压控振荡器)在改变参考时钟时采用了切换电容器组的方法。这种切换转换会对输出时钟造成暂时的相位偏移。采用超低抖动时钟倍频器电路可以解决这个问题。
  高性能网络时钟在系统的所有参考时钟都失去时采用一种称为"保持"的机制。这是通过记忆存储技术产生系统最后一个已知良好参考时钟来实现的。进入和退出保持模式可能会对输出造成相位扰动。当处于保持模式中时,由于准确频率的再生不够精确,因此会继续产生输出相位误差。集成电路技术的进步已使保持精度达到了 0.01ppb。输入参考时钟恶化和对系统的维护测试(不会导致参考时钟切换)过少,也会造成输出相位扰动。
  系统输出扰动是有限的,取决于系统在较低层次可以接受的输入容限。例如,符合 G.813 选项 1 的时钟,其相位扰动中所允许的相位斜率和最大相位误差被限制为 1μS,最大相位斜率为 7.5ppm,两个 120ns 相位误差段,其余部分的相位斜率为 0.05ppm。这些数字对应于 G.825 标准规定的输入抖动容限,该标准描述了在 SDH 网络内对抖动和漂移的控制。
  当输出相位被扰动时,将相位误差的幅度和速率保持在标准组织所建议的极限之内,可确保在端到端系统中对信号恶化进行妥善处理,从而避免数据损坏或丢失。例如,当系统同步器进行参考时钟切换时,如果输出相位误差位于规范要求之内,同步器就可实现"无间断"参考时钟切换,指示存在缓冲器溢出或欠载,造成指针移动、位调整或滑动。
 

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top