汽车电动助力转向系统电控单元设计方案
机构控制系统的性能及设计难易程度度。本设计采用Freescale公司的16位高精度MC9S12DP256单片机。MC9S12DP256内置5个CAN模块、2个8通道10位A/D转换模块、8个PWM通道,总线速度25 MHz,采用5 V供电,112脚LQFP封装。此单片机,内部资源丰富,可大大简化控制系统硬件电路,其可靠性高,非常适用于EPS控制。设计中没有用到的管脚引到电路板上,以便于后续开发。
硬件设计如图3所示。车速、发动机、转矩信号经处理后送给MC9S12DP256单片机,经单片机计算后,得到电机助力电流值,经驱动电路后作用于助力电机,控制电机输出力矩的大小和方向,同时对电机电流进行采样,并送回单片机,形成闭环控制。在助力控制基础上,设计了电机保护电路和故障诊断与提示电路。一旦检测到故障存在,立即断开离合器,改用纯手动转向,并发出故障信号,从而保证了行车安全。
3.2 控制系统硬件电路设计
硬件电路设计主要包括电源转换电路、扭矩信号处理电路、车速信号处理电路、CAN通信电路、时钟电路。具体设计如下:
电源转换由于单片机工作时管脚电压为+5 V供电,而车载电源电压为+12 V。因此,需要对+12 V电压进行转换,变成+5 V。本设计中采用7805电压转换芯片进行电压变换。
扭矩信号处理由于扭转传感器获得的是一些微弱的小信号,容易受干扰,因此需要对其进行滤波处理。本设计采用型滤波电路,R12取大电阻,提高输入阻抗。
车速处理电路车速信号为+12 V单极性方波,电压太高,不能直接用于单片机,需要将其变换为+5 V以内的方波。利用LM358对其进行处理,经转换后得到高电平为3.72 V,低电平为0.01V的方波信号。
CAN总线驱动电路MC9S12DP256内部集成了CAN总线控制器,CAN驱动电路只需要物理层驱动即可。本设计选用82C250芯片进行设计。
时钟电路时钟是单片机工作的基础。MC9S12DP256单片机内部集成了压控振荡器,可在其43、44和46、47引脚分别接上锁相环电路和16MHz的晶振电路。组成MC9S12DP256时钟电路,提供25MHz的时钟信号。
具体电路设计如图4所示。
4 系统软件设计
EPS控制软件采用模块化设计,包括进行系统初始化、信号采集、控制状态判、控制模式判断、PWM占空比计算、系统状态监控及保护、电流闭环模块、通信模块等。EPS控制系统需要同时执行多个任务,为了保证系统的实时性和可靠性,采用中断服务方式,将整个软件部分分为主程序和中断服务子程序。主程序设计流程如图5所示。
5 结束语
文中分析了汽车电动助力转向系统的工作原理。设计了直线型助力特性曲线,建立了增量式闭环PID控制策略,减小了芯片的计算量,增强了系统的助力跟随性。利用MC9S12DP256单片机的丰富内部资源,简化了EPS硬件电路系统,降低了电路间的干扰,从而提升了系统可靠性,设计了基于MC9S12DP256的EPS控制系统硬件电路,并给出了软件设计流程。本文设计的EPS系统可以编写多种EPS控制算法,有利于后续深入研究。对于控制性能的优化将在进一步的控制策略研究和试验中进行。
电动助力转向系统 MC9S12DP256 EPS 相关文章:
- 基于PIC18F458与OSEK/VDX的电动助力转向系统设计方案(09-26)
- 电动助力转向系统用扭矩传感器分类_各类型电动助力转向系统用扭矩传感器介绍(07-24)
- 应急电源用的EPS和UPS电源(12-03)
- EPS应急电源作为后备电源的优势(04-12)
- EPS电源和UPS电源解析(07-06)
- EPS与UPS的区别比较(06-18)