你可能不知道的LTE载波聚合
五年后的从最初的商业推出的长期演进(LTE), 到最新的第四代蜂窝技术, 为设备例如智能手机与平板电脑支持着完整的移动性连接,很显然,消费者对更快速度和更低的延迟连接的需求还未满足,事实上反而还在增加。鉴于下一代技术,如LTE可实现或启用,从高清视频流,到以无处不在的快速接入以云端技术为基础的信息,可看到现在消费者对于他们的移动设备和网络的要求比以往还要更高。
高清内容是这种需求增长的一个典型的例子。是由什么启动呢?是因为消费者已习惯看高清电影,视频和其他内容,已经演变成一个习惯性的高需求用于上传用户生成的内容,不仅在高清,而且也在诸如4K的分辨率上启用与享用,以及用在消耗更大屏幕显示例如用在支持4K以上的电视。高清内容消费的最初需求已是够用于解决指数倍增增长的信息下行,但由其带来的用户产生的内容增长使得上行也更具有挑战性。复合性双向的信息传送增长,高清和4K内容的文件也随着增长, 造成需要更高容量的带宽和更低的延迟性能以确保消费者不会花费太多时间等待在上传或下载自己的照片或影像。由于LTE的初步能力可提供较大的文件,不仅是消费者,而且网站设计师也纷纷开始再增加图像和影像的分辨率, 因而进一步增加了网路的需求与负担。
这仅仅是一个例子,现在,消费者已活在其数码世界中以高清快速分享和使用其信息与内容,况且,也期盼现有服务提供商与设备能符合或接近需求。这种使用情况动态创建的需求正在迅速超越LTE基本功能,并拉动行业继续提供更有利的能力与技术以满足消费者的高清生活的要求。
因此,载波聚合可以帮助了解LTE的下一阶进化,IHS公司提供一系列的载波聚合见解,进一步探讨最新的发展,和针对对移动网络操作商(MNO),设备OEM与最终消费者的影响。本文是本系列中的第一份发行。
探索的关键领域
在一系列的过程中,IHS将探讨以下内容:
什么是载波聚合?它是如何可以帮助MNO们和OEM们,以及如何以最佳方式传达知识给予不太了解其技术复杂性的消费者?
在采用循环中,目前载波聚合所占的位置是哪里?这是否是真的还是仍然只是一个理论上的概念?
什么是载波聚合接着下来的作为,以及其在实现高清晰度生活中所扮演的角色?
载波聚合技术:这是什么呢?
于第三代网络相比,LTE的主要优点是带宽的提高,延迟的减少和改进的频谱效率。然而,这些益处,相对于HSPA +还未完全实现,直到信道带宽被使用高于10兆赫。在10兆赫的信道宽度, 与HSPA + 同时相比,LTE的性能可以说是勉强比较好些。因此,为了优化用户体验以及运营商的投资回报构建出LTE网络,出现了查找使用15,20,40,甚至60 兆赫以上频道方式的需求。不幸的是,由于现有许可的频谱使用量,大多数国家的频谱规划都不允许接近20兆赫的信道。另外,即使它确实有,该技术本身最大的单信道带宽只具有的20兆赫。因此,要让特定应用程序或网络设计需要的40或60兆赫,是必须使用载波聚合技术。这就是载波聚合,在LTE标准的第10版中引入的原因。在最简单的形式中,载波聚合可使启用设备将2个,更小的,和非连续的信道合并到一个较大的信道,此信道的优点是和相同尺寸较大的邻接信道相同。然而,如在有关LTE中最多的事,实施载波聚合将不局限于此最基本的形式。设计使得载波聚合将需要考虑到许多不同类型的信道组合,其中包括了但不局限于:
多达5个相同或不同带宽的聚集频道;
在同一频带里有数个不相邻频道(即全部在700兆赫频段以内);
数个使用相同频带相邻频道- 通常是在试图达到40和60兆赫的组合时使用,但是也可以和具有较小的带宽的一起使用;
从2个不同的频带的频道,但是,从两者都是处于频谱的高端(一个频道是从1.9GHz的频带和另一个从2.1GHz的频带);
从2个不同的频带的频道,但只有一个从频谱的低端,而另一个从频谱的高端是(一个频道从700MHz频段和另一个从2.1GHz频带);
后两种情况都是同一类型的带间载波聚合,但值得一提是,它们离聚集信道越远,将导致调制解调器为了解决这些RF信号中不同的物理特性,使设计更加复杂化。
聚集频道的数量及其个别带宽数会导致在理论中不同的最高速度,然后决定LTE用户设备(UE)所支持的种类。下面列表提供了载波聚合的组合和其中能使用 LTE UE 种类的一些例子。
一旦结合,聚集的信道通常会得到比一般单独行动,但拥有同样数目的频道的表现的更好,尤其是对于突发流量的数据。除了其他的原因,这是由于聚集的信道能够分享信号和开销控制,及与
- 一种低功耗宽频带LDO线性稳压电路设计(07-29)
- 泰尔实验室:HSPA关键技术解析(05-02)
- 一种CMMB接收机中的载波频偏跟踪估计的实现(03-19)
- 基于PLC和OFDM技术的电力线载波技术在工厂数据传输中的应用(03-02)
- RFID走热,设计机会将会激增(03-03)
- 5G商用之前 先了解一下千兆级LTE的三个关键技术(10-29)