零中频接收机设计
相较传统的超外差接收机,零中频接收机具有体积小,功耗和成本低,以及易于集成化的特点,正受到越来越广泛关注,本文结合德州仪器(TI)的零中频接收方案(TRF3711),详细分析介绍了零中频接收机的技术挑战以及解决方案。
概述
零中频接收机在几十年前被提出来,工程中经历多次的应用实践,但是多以失败告终,近年来,随着通信系统要求成本更低,功耗更低,面积更小,集成度更高,带宽更大,零中方案能够很好的解决如上问题而被再次提起。
本文将详细介绍零中频接收机的问题以及设计解决方案,结合 TI 的零中频方案 TRF3711测试结果证明,零中频方案在宽带系统的基站中是可以实现的。
1、超外差接收机
1.1 超外差接收机问题
为了更好理解零中频接收的优势,本节将简单总结超外差接收机的一些设计困难和缺点。
图一是简单超外差接收机的架构,RF 信号经过 LNA(低噪声放大器)进入混频器,和本振信号混频产生中频信号输出,镜像抑制滤波器滤出混频的镜像信号,中频滤波器滤除带外干扰信号,起到信道选择的作用,图中标示了频谱的搬移过程及每一部分的功能。
在超外差接收机种最重要的问题是怎样在镜像抑制滤波器和信号选择滤波器的设计上得到平衡,如图一所示,对滤波器而言,当其品质因子和插损确定,中频越高,其对镜像信号的抑制就越好,而对干扰信号的抑制就比较差,相反,如果中频越低,其对镜像信号的抑制就变差,而对干扰信号的抑制就非常理想,由于这个原因,超外差接收机对镜像滤波器和信道滤波器的选择传输函数有非常高的要求,通常会选用声表滤波器(SAW),或者是采用高阶 LC 滤波器,这些都不利于系统的集成化,同时成本也非常高。
在超外差接收机中,由于镜像抑制滤波器是外置的,LNA 必须驱动 50R 负载,这样还会导致面积和放大器噪声,增益,线性度,功耗的平衡性问题。
镜像滤波器和选择滤波器的平衡设计也可采用镜像抑制架构,如图二所示的 Hartley(1)和 Weaver(2)拓扑架构,在 A 点和 B 点的输出是相同极性的有用信号和极性相反的镜像信号,这样通过后面的加法器,镜像信号就可以被抵消掉,从而达到简化镜像滤波器的设计,但是这种架构由于相位和幅度不平衡,其镜像信号没有办法完全抑制,如证明(6),镜像抑制比 IIR。
2、零中频接收机
2.1 零中频接收机架构及优势
零中频接收机架构如图三,是指 RF 信号(radio frequency)直接转化到零频信号,LPF(低通滤波器)用于近端干扰信号的抑制, 在零中频架构中,在典型的相位/幅度调制中,正交的 I 和 Q 两路信号是必须的,由于两个边带信号包含了不同有用信息,必须在相位上区分。
相较超外差架构,零中频架构优势:1:没有镜像抑制要求;2:LNA 不需要驱动 50R 负载;3:采用相同 ADC 情况下,带宽是超外差架构的两倍;4:声表滤波器和复杂的 LC 滤波器可以采用简单的低通滤波器替换,从而利于集成芯片设计,如图四,TRF3711 就是采用零中频架构,集成了I/Q 解调器,低频的可调增益放大器以及可调信道选择滤波器,实现了高集成方案。
既然零中频接收架构如此简单,为什么到目前为止,还没有广泛应用呢?那是因为零中频接收机极易被各种噪声污染,从而影响系统性能,下面将讨论零中频接收架构的挑战。
2.2 零中频接收机的挑战及解决方案
零中频接收机到目前为止,还只用于手持设备上,在基站上还没有应用,原因是在零中频架构上,有很多无可避免的噪声源没有办法得到抑制,本文将重点讨论闪烁噪声(1/f),直流偏置(DCoffset);I/Q 不平衡;偶次谐波。
1. 闪烁噪声(1/f)
闪烁噪声是有源器件固有的噪声,其大小随频率降低而增加,主要集中在低频段,闪烁噪声对搬移到零中频的基带信号产生干扰,降低信噪比,在通常的零中频接收机中,增益都放在基带,射频部分(LNA 和解调器)的增益大概在 30dB 左右,所以下变频信号大概会在几十微伏,所以射频输入级(LNA,滤波器等等)的噪声就变得非常重要。
为了更好理解闪烁噪声,我们可以来分析一个独立的 MOS 管,在输入闪烁噪声和纯热噪声情况下的噪声恶化情况,对一个典型的亚微粒 MOS 管,计算带宽为 1MHz 情况下的闪烁噪声:(3)
如果考虑闪烁噪声的情况下,噪声增加了 Pn1/Pn2=16.9dB, 而在超外差结构中,闪烁噪声将无关紧要,因为信号主要在中频进行放大。
减少闪烁噪声的方法(3):下变频器后的链路工作在低频,这样可以选择双极性晶体管,从而
偶次谐波 零中频接收机 直流偏置 TRF3711 相关文章:
- 零中频射频接收机技术(02-11)
- 双音和WCDMA调制阻塞的有效IM2分量评估(02-11)
- LT3751如何使高压电容器充电变得简单(08-12)
- 三路输出LED驱动器可驱动共阳极LED串(08-17)
- 浪涌抑制器IC简化了危险环境中电子设备的本质安全势垒设计(08-19)
- 严酷的汽车环境要求高性能电源转换(08-17)