零中频接收机设计
能够降低闪烁噪声;另外采用高通滤波器和类直流校准也能够抑制低频的噪声。
2. 直流偏置(DC-offset)
由于零中频接收机转换带宽信号到零中频,大量的偏置电压会恶化信号,更严重的是,直流偏置信号会使混频后级饱和,如饱和中频放大器,ADC 等。
为了理解直流偏置的起源和影响,我们可以参照图四的接收通道进行说明。
如图四(a)所示, 本振口,混频器口,LNA 之间的隔离度不好,Lo(本振信号)可以直接通过 LNA和混频器,我们叫做"本振泄露", 这种现象是由于芯片内部的电容及基底耦合的,耦合的 Lo 信号经过 LNA 到达混频器,和输入的 Lo 信号混频,叫做"自混频",这样会在 C 点产生直流成分;近似的情况如(b),从 LNA 出来的信号耦合到混频器的本振输入口,从而产生了直流分量;
为了保证 ADC 能够采样出射频端口微伏级的电压,通常需要整个链路增益在 100dB 以上,其中25-30dB 的增益来自 LNA 和混频器的贡献。
基于如上分析,对于自混频产生的直流偏置,我们可以做一个大概的估算,假设混频器的 Lo 输入信号为 0.63Vpp(等同于在 50ohm 系统中的 0dBm),通常情况下是-6dBm--+6dBm,假设隔离度为60dB,所以图五(a),考虑到 30dB 的射频增益,混频器的输出直流信号大概为 10mVpp,在现代通信系统中,在 LNA 输入的有用信号可以低至 30uVrms, 为了能够采样有用信号,需要中频放大70dB 左右,10mV 的直流电压也会放大 70dB,会导致混频器后的基带放大器器件饱和,产生失真,即使基带放大器是理想的放大器,也需要一个超高动态范围的 ADC 才能解决直流偏置问题,而这种动态范围的 ADC 在实际上是不可实现的。
怎样解决零中频接收机的直流偏置问题呢?最简单的方案是采用交流耦合的方式,比如加一个高通滤波器,然而随机二进制数据的频谱在 DC 会呈现出一个峰值,很多仿真证明,为了不恶化信号,高通滤波器的频率截止点必须低于数据速率的 0.1%, 如果是 GSM信号,其数据速率为 200K,这要要求滤波器的截止频率为 200Hz 左右,这样小的值会导致,1:如果直流偏置变化,其响应会非常慢,2:需要非常大的电容和电阻, 解决的办法是采用在直流附近最小化信号能量的调制方式,比如 UMTS 制式的 BPSK 调制方式。
另外一种常用的方法是通过算法校准的方式消除直流偏置,如图五所示的架构是 TI(德州仪器)的盲校算法,通过计算 122.88MHz 时钟周期的直流偏置量,每 1.067ms 输入信号实时抵消直流偏置,
直流累加
TI 的盲校算法可以在全温范围内把直流偏置校准到低于+/-5mV 以内,图六是基于 TRF3711 的实测试结果。
TI 的盲校算法可以在全温范围内把直流偏置校准到低于+/-5mV 以内,图六是基于 TRF3711 的实测试结果。
3. I/Q 不平衡(I/Q imbalance)
对于大多数相频调制信号,采用零中频架构要求 I/Q 两路信号必须是正交,可以采用射频偏移 90图七(a)度或者 Lo 偏移 90 度度的方式图七(b),偏移 RF 信号需要承担严重的噪声—功率—增益间的平衡,通常采用偏移 Lo 的方式实现正交解调,对于 I/Q 两路信号的相位,幅度不平衡都会导致解调信号的星座图恶化。
图 8(a),(b)分别在星座图中标示了增益不平衡和相位不平衡的情况,为了更直观的说明 I/Q 不平衡的影响,在时域图进行分析,图(c)是增益不平衡造成幅度的比例因子不同,而图(d)是相位不平衡造成了一个通道的部分脉冲数据恶化另一通道的数据,但是相对镜像信号(实中频)而言,边带信号(复中频)的影响非常小。
虽然相较镜像信号的影响,I/Q 不平衡的影响没有非常显著; 同样需要对 I/Q 不平衡信号做处理,除了在硬件上尽量保证 I/Q 两路信号的幅度一直和相位平衡外,通常会采用算法进行校准,TI(德州仪器)的盲校算法可以校准到近 20dB 的改善 (此处不详细描述具体的算法过程)。
4. 偶次谐波(even harmonic)
传统的超外差架构对只是对奇次谐波敏感,而零中频接收机则对偶次谐波非常敏感,简单举例,传统的高中频方案,设主信号中频为 100MHz,两个干扰信号 f1=110MHz,f2=120MH 在,三次谐波2f1-f2=100MHz, 2f2-f1=130MHz,他们离主信号都很近,而偶次谐波 f1-f2,f1+f2 等都离主信号很远,从而能够非常容易滤除,所以对零中频架构而言,偶次谐波影响就非常严重,通常以 IIP2 来定义偶此谐波,相比奇次谐波,偶次谐波的功率更大,而且不像奇次谐波,,可以通过频率规划来规避它,而偶次谐波可以产
偶次谐波 零中频接收机 直流偏置 TRF3711 相关文章:
- 零中频射频接收机技术(02-11)
- 双音和WCDMA调制阻塞的有效IM2分量评估(02-11)
- LT3751如何使高压电容器充电变得简单(08-12)
- 三路输出LED驱动器可驱动共阳极LED串(08-17)
- 浪涌抑制器IC简化了危险环境中电子设备的本质安全势垒设计(08-19)
- 严酷的汽车环境要求高性能电源转换(08-17)