微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 教你详细了解白光LED

教你详细了解白光LED

时间:02-21 来源:互联网 点击:

属脚座散去组件所发出的热量。就目前的趋势看来,金属脚座材料主要是以高热传导系数的材料为主而组成的,如铝、铜甚至陶瓷材料等,但这些材料与芯片间的热膨胀系数差异甚大,若将其直接接触,很可能因为在温度升高时材料间产生应力而造成可靠性问题,所以一般都会在材料间加上具有适当传导系数及膨胀系数的中间材料作为间隔。松下电器将公司多只白光LED制成在金属材料与金属系复合材料所制成的多层基板模块上以形成光源模块,利用光源基板的高导热效果,使光源的输出在长时间使用时仍能维持稳定。Lumileds生产的白光LED基板所使用的材料为具有高传导系数的铜材,再将其连接至特制的金属电路板,就可以兼顾电路导通及增加热传导效果。

  大功率白光LED产品的芯片制造技术、封装技术似乎已经成为高亮度白光LED的主流技术,然而与大芯片相关的制造技术及封装技术不只是将芯片面积做大,若希望将白光LED应用于高亮度照明领域,相关技术仍有待进一步研究。

  白光LED应用于一般照明领域还有诸多问题需要解决,首先是白光LED的效率提升,例如GaInN系的绿光、蓝光以及近紫外光LED的效率仍有很大的开发裕度。此外,综合能源效率的内部量子效率的提升是最重要的项目,内部量子效率由活性层的非发光再结合百分比与发光再结合百分比所决定,因此可以把焦点锁定在非发光再结合这部分,并设法降低结晶缺陷。而减少紫外光LED的转位密度确实可以明显提高内部量子效率,未来必须针对紫外光LED进一步降低它的转位密度。不过这项对策对绿光、蓝光LED并没有明显的影响。

  绿光与蓝光LED在低电流密度(约1A/cm2)时具有最大的量子效率,在高电流密度时量子效率反而会下降,如图7所示。从成本观点考虑时则希望LED能够以高电流密度来驱动,同时尽可能增加组件的输出功率,因此早日解开绿光与蓝光LED高电流密度时量子效率下降的机理与原因,不单是材料物理特性探索上的需要,这项研究对于未来应用也是具有关键性的角色。目前的研究显示紫光LED(波长为382nm)即使施加高电流密度(50A/cm2),量子效率也不会下降。

  

  图7 GaInN 系 LED的量子效率与电流密度的关系

  传统的白光LED都是将边长为200~350μm的正方形芯片封装成圆头柱外形,之后为了获得照明所需要的光束,再将已封装的多个白光LED组件排列成矩阵状。单纯以高输出功率为目的而特别开发出的面积比以往芯片大6~10倍,外形尺寸高达500μm~1mm的白光LED,虽然封装后可获得数百毫瓦(数十流明)的输出功率,但是加大芯片的外形尺寸,反而使白光LED内部的光吸收比率增加、外部取光率降低。就以AlGaInP LED为例,芯片的外形尺寸从0.22mm×0.22mm加大为0.50mm×0.50mm后,外部取光率反而降低20%左右。如果改用TIP结构,内部多重反射的结果使得内部光吸收率降低,外部取光率则明显提高。GaInN LED 也有相同的效果。如何提高LED芯片的外部取光率是LED应用于一般照明领域的关键。此外,高的热阻抗(150~200K/W)对高亮度输出相当不利。LED内部量子效率对活性层温度的依存度极大,因此除了低热阻抗封装技术之外,利用散热片排除活性层的热流成为今后研发的热点。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top