TVS二极管在便携设备ESD中应用
对过压威胁。
3.Vc这是二极管在截止状态提供的电压,也就是在ESD冲击状态时通过TVS的电压,它不能大于被保护回路的可承受极限电压,否则器件面临被损伤的危险。
4.Pppm额定脉冲功率 这是基于最大截止电压和此时的峰值脉冲电流,对于手持设备,一般来说500W的TVS就足够了。
5.电容对于数据/信号频率越高的回路,二极管的电容对电路的干扰越大,形成噪声或衰减信号强度,因此需要根据回路的特性来决定所选器件的电容范围。高频回路一般选择电容应尽量小(如LCTVS、低电容TVS,电容不大于3pF),而对电容要求不高的回路电容选择可高于40pF。
下面分别介绍几种常见手持设备ESD保护对TVS的要求:
音频输入/输出:音频回路的信号速率比较低,对器件电容的要求不太高,100pF左右都是可以接受的。有的设计中将耳机和麦克风合在一起,有的则是分立线路,前一种情况可以选择单路TVS,而后一种情况如果两个回路是邻近的,则可以选用多路TVS阵列,只用一个器件就能完成两个回路的保护。
按键/开关:这些回路的数据率很低,对器件的电容没有特殊要求,用普通的TVS阵列都可以胜任。
数据视频/USB2.0:数据率高达480Mbps,有的视频数据率达到1G以上,因而要选择低电容LCTVS,它通常是将一个低电容二极管与TVS二极管串联,以降低整个线路的电容(可低于3pF),达到高速率回路的要求。
SIM卡/天线:有专门为此类端口设计的集ESD(TVS)/EMI/RFI防护于一个芯片的器件,充分体现了片式器件的无限集成方案。
电源/充电口:由于是直流回路,可选用高电容器件。此端口可能会受到高能量的冲击,可以选用集成了TVS和过流保护功能的器件。
在针对不同用途选择器件时,要避免使器件工作在其设计参数极限附近,还应根据被保护回路的特征及可能承受ESD冲击的特征选用反应速度足够快、敏感度足够高的器件,这对于有效发挥保护器件的作用十分关键,另外集成了其它功能的器件也应当首先考虑。
众多半导体厂商提供了多种不同的TVS二极管封装形式,尤其是像SOT23和SC-70,以及与芯片同等大小的倒装芯片之类的微型封装,在板上只占约4.8mm2的位置,却可以同时保护多个线路。最近的许多新产品更是适应便携设备高集成度、小型化要求,将EMI/RFI/ESD保护集成在一个器件中,不但可以有效缩小空间,还大大减少了成本,降低了器件采购成本和加工成本,对于同时需要这几种保护功能的端口来说,可谓设计者的首选。
PCB布局配合
对于便携式设备来说,各类集成电路的复杂性和精密度的提高使它们对ESD也更加敏感,以往的通用回路设计也不再适合。在使用TVS二极管保护ESD损害的同时,必须配合合理的PCB布局。
首先是要避免自感。对于ESD这样巨变突发的脉冲,很可能会在回路中引起寄生自感,进而对回路形成强大的电压冲击,并可能超出IC的承受极限而造成损伤。负载产生的自感电压与电源变化强度成正比,ESD冲击的瞬变特征易于诱发高强自感。减小寄生自感的基本原则是尽可能缩短分流回路,必须考虑到包括接地回路、TVS和被保护线路之间的回路以及由接口到TVS的通路等所有因素。所以TVS器件应与接口尽量接近,与被保护线路尽量接近,这样才会减少自感耦合到其它邻近线路上的机会。
另外可应用下述原则对线路进行优化:
1.避免在保护线路附近走比较关键的信号线;
2.尽量将接口安排在同一个边上;
3.避免被保护回路和未实施保护的回路并联;
4.各类信号线及其馈线所形成的回路所环绕面积要尽量小,必要时可考虑改变信号线或接地线的位置;
5.将接口信号线路和接地线路直接接到保护器件上,然后再进入回路的其它部分;
6.将复位、中断、控制信号远离输入/输出口,远离PCB的边缘;
7.在可能的地方都加入接地点;
8.采用高集成度器件,二极管阵列不但可以大大节约线路板上的空间,而且减少了由于回路复杂可能诱发的寄生性线路自感的影响。
本文结论:使用TVS二极管对便携设备实施ESD保护是一种方便、有效和可靠性高的途径,根据具体用途合理选择参数和集成度是成功应用的关键,另外优化的PCB设计也是必不可少的。
- 用于24V动力总成系统的抛负载TVS系列器件盘点(08-16)
- TVS管在保护电路中的应用(07-07)
- 采用TVS二极管的ESD原理及典型电路(09-20)
- 工业数字模拟转换器:如何保护二线制变送器(06-06)
- TVS二极管在电路设计应用TOP7(03-02)
- 多层板中间地层分割处理技巧(10-23)