微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 便携式应用中电源管理新方案

便携式应用中电源管理新方案

时间:06-10 来源:互联网 点击:

器或其他电源轨供电。此外,通过I2C也可以使不同的构建块(如IC上所有三个LDO或DC/DC转换器)在"开/关"之间切换,以降低整个PMU的功耗及发热量。"关闭"不同的构建块也可动态降低静态电流的消耗。

  另一种方法是使用DC/DC转换器的预设输出电压。TPS62400是一款双通道的降压转换器,该器件不带I2C接口,但具有被称为"Easyscale"的单线接口。通过Easyscale,我们可以在运行过程中访问并更改存储于器件EEPROM中的预定义输出电压。根据所选输出电压的范围(0.7V~6.0V),电压步长(Voltage step)可小至25mV、50mV或100mV。

  总之,动态电压测量可降低整体功耗、优化系统性能并延长电池使用寿命。可根据器件活动、工作模式以及温度变化等动态控制电压大小、频率及功率预算,以使电源系统更灵活。

  便携式系统中的降-升压DC/DC转换器(Vbat等于Vrail)

  另一方面,摄像模块、音频放大器、内存卡以及其他子系统需要数倍于3.1V、3.3V或3.6V的电源电压。当电池电压超过目标电压轨时,根据定义则电源功率级需要降低电池电压;反之,则升高电池电压。有多种解决方案都可解决

  这一难题,如SEPC、反向转换器(Flyback Converter)或级联式升、降压转换器。每种解决方案都各有其自身的优劣势,但都无法同时实现最小的体积和最高的效率。

  最新解决方案是近期推出的一款高集成度降-升DC/DC转换器TPS63000。该转换器具有4个组合了独特控制设计的集成主电源FET。由于解决了现有解决方案的效率降低问题,当电池电压与输出电压相同或相近时(Vbat=Vrail),优化后的效率最高可达96%。这意味着什么?首先,与现有解决方案相比,其效率提高了2%~6%;其次,更为重要的是这种效率优势能够体现在整个电池电压范围内。

  这样就实现了电池容量的最大化利用,从而显著延长电池使用寿命,并最终带来超长的系统/应用工作时间及待机时间。

  第二个要讨论的重要问题是使体积最小化,该款集成转换器采用3x3mm2 QFN封装,与2.2uH电感器的大小相同。为减少无源组件数,可预设输出电压(如3.3V)来使总体组件数减少到4个:IC+电感器+2个电容器。

  本文小结

  便携式应用的电源管理正向效率更高、体积更小、更加灵活的方向发展。随着接口功能的推陈出新,新的控制方案、电源轨的快速控制、数字处理器及其模拟电源管理组件之间的通信都将实现全面的提升。

  功率预算的实时调整、处理器省电方案的调整以及负载条件下电压轨的优化等都将使电池更加智能化。这对于提高应用的使用时间以及延长电池使用寿命等都极有帮助,并在用户使用系统所有功能的前提下显著延长待机时间、通话时间或播放时间。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top