基于正交矢量放大的MRS信号采集模块设计----背景及其原理
MRS信号比较微弱,只有nV级,当采用100米发射/接收线圈时,产生的核磁共振信号范围大概几十nV~3000nV,易受各种噪声干扰,本文的主要工作是设计适合核磁共振信号的采集模块。
2.2核磁共振信号采集方法分析
如前文所述,MRS信号可以看做是一个调幅波,而参数提取过程就相当于解调过程。用包络检波的方式可以方便快捷地提取MRS信号的关键参数。而且采集信号的包络不需要很高的采样率,这就大量地减少了采集数据,提高了系统的运行速度。
常用的包络检波电路是由检波二极管和RC低通滤波器组成的,如图2.4所示。
二极管包络检波电路是通过二极管导通时对电容充电和二极管截止时电容对电阻放电来实现包络提取的。但是这种方法不适合核磁共振信号。首先它无法鉴别MRS信号的相位ψ0,其次包络检波电路本身不具备区分不同频率信号的能力,对于不同频率的信号它都以同样方式对它们整流、检波,这就是说它不具有鉴别信号的能力。
本文针对核磁共振信号在同一个地点频率单一的特点,提出一种相敏检波的方法来实现MRS信号包络的采集。利用正交矢量锁定放大器同时对MRS信号进行频率和相位的鉴别,不仅可以方便地提取出MRS信号的E0、E0(q)、ψ0等关键参数,满足后期数据处理、反演解释的需要,而且可以进一步地提高信噪比。
2.2.1锁定放大器工作原理锁定放大器(lock-in amplifier,LIA)抑制噪声有3个基本出发点[13]:
(1)用调制器将直流或慢变信号的频谱迁移到调制频率ω0处,再进行放大,以避开1/f噪声的不利影响。
(2)利用相敏检测器实现调制信号的解调过程,可以同时利用频率ω0和相角θ进行检测,噪声与信号同频又同相的概率很低。
(3)用低通滤波器而不是用带通滤波器来抑制宽带噪声。低通滤波器的频带可以做得很窄,而且其频带宽度不受调制频率的影响,稳定性也远远优于带通滤波器。
锁定放大器对信号频谱进行迁移的过程如图2.5所示。调制过程将低频信号Vs乘以频率为ω0的正弦载波,从而将其频谱迁移到调制频率ω0两边,之后进行选频放大,这样就不会把1/f噪声和低频漂移也放大了,如图2.5(a)所示。图中的虚线表示1/f噪声和白噪声的功率谱密度。经交流放大后,再用相敏检测器(PSD)将其频谱迁移到直流(ω= 0)的两边,用窄带低通滤波器(LPF)滤除噪声,就得到高信噪比的放大信号,如图2.5(b)所示。图中虚线表示LPF的频率响应曲线。只要LPF的带宽足够窄,就能有效地改善信噪比。
锁定放大器的基本结构如图2.6所示,包括信号通道、参考通道、相敏检测器(PSD)和低通滤波器(LPF)等。
信号通道对调制信号输入进行交流放大,将微弱信号(nV数量级)放大到足以推动相敏检测器工作的电平,并且要滤除部分干扰和噪声,以提高相敏检测器的动态范围。
参考输入一般是等幅正弦信号或方波开关信号,它可以是从外部输入的某种周期信号,也可以是系统内原先用于调制的载波信号或用于斩波的信号。参考通道对参考输入进行放大或衰减,以适应相敏检测器对幅度的要求。参考通道的另一个重要功能是对参考输入进行移相处理,以使各种不同相移信号的检测结果达到最佳。
PSD是锁定放大器的核心部件,它的输出不仅取决于输入信号的幅度,而且取决于输入信号与参考信号的相位差。常用的相敏检测器有模拟乘法器式和电子开关式,实际上电子开关式相敏检测器相当于参考信号为方波的情况下的模拟乘法器。
PSD以参考信号r(t)为基准,对有用信号x(t)进行相敏检测,从而实现图2.5所示的频谱迁移过程。
将x(t)的频谱由ω=ω0处迁移到ω= 0处,再经过LPF滤除噪声,其输出u0(t)对x(t)的幅度和相位都敏感,这样就达到了既鉴幅又鉴相的目的。因为LPF的频带可以做得很窄,所以可使锁定放大器达到较大的信噪比.
2.2.2正交矢量型锁定放大器
信号的幅度是按低频调制信号变化的,如果把高频调幅信号的峰点连接起来,就可以得到一个与低频调制信号相对应的曲线,这条曲线就是信号的包络线。正交矢量型锁定放大器是检测微弱信号包络曲线最常用的方法,如图2.7所示为其原理框图。
正交矢量型锁定放大器需要两个相敏检测器系统,它们的信号输入是同样的,但两个参考输入在相位上相差90°,在同相通道中PSD1参考输入的相移为θ(0~360°),正交通道中PSD2参考输入的相移为θ+90°。
同相输出为
而其正交输出为
由这两路输出可以计算出被测信号的幅度Vs和相位θ: