微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 基于正交矢量放大的MRS信号采集模块设计----背景及其原理

基于正交矢量放大的MRS信号采集模块设计----背景及其原理

时间:02-01 来源:3721RD 点击:

1.3本论文的主要内容

本文在掌握核磁共振找水技术原理的基础上,作为吉林大学教育部地球信息探测仪器重点实验室核磁共振项目组的一部分,主要对经过核磁共振放大器放大后的核磁共振信号进行采集。获取核磁共振信号实际上是获取其包络信号,称为自由感应衰减信号(free induction decay,缩写为FID信号).本文所研究的内容是根据乘法型正交矢量锁定放大器的基本原理,利用CPLD和D/A转换器进行核磁共振信号和参考信号相乘,实现信号正交矢量放大功能,提取出FID信号,获得核磁共振找水探测的各关键参数。根据FID信号包含的参数,对地下水信息进行反演,确定地下水水量、地层结构等信息,以指导工程实践。本论文具体结构和内容包括:

第一章为绪论,主要介绍了本文的研究背景和意义,国内外的发展现状。

第二章为基本理论,首先介绍了核磁共振找水的原理,再通过分析核磁共振信号的特点,提出了基于正交矢量放大方法的核磁共振信号包络采集模块的设计方案。最后通过仿真验证了该设计方案的可行性。

第三章对采集模块的技术指标做了介绍,并给出了采集模块的整体设计框图。

第四章介绍了采集模块的硬件设计,给出了主要电路的设计思路和一些调试过程中的实测结果。

第五章介绍采集模块的软件实现。包括单片机软件实现、CPLD软件实现和上位机主控软件说明。

第六章对采集模块进行了一系列室内测试及野外实测,并对测试结果进行了分析说明。

第七章对全文进行总结,并提出进一步的改进建议。

第二章核磁共振信号采集模块的原理及分析

2.1核磁共振找水原理

核磁共振是原子核的一种物理现象,指具有核子顺磁性的物质选择性地吸收电磁能量。氢核是地层中具有核子顺磁性物质中磁旋比最大的核子。水中氢核在内的多种原子核均具有一个不为零的偶磁矩,描述磁矩存在的经典模型是旋转着的带电粒子。

如果一个磁矩为M的自旋带电粒子被放在强度为B0的磁场中时,磁矩将承受一个使其与磁场趋于平行的扭力矩。因为地下水中的氢核具有核子顺磁性,它又是地层中具有核子顺磁性的物质中丰度最高的粒子,所以在地球磁场B0的作用下,氢核将处于一定的能级,同时氢核表现出沿地球磁场方向排列的磁矩.图2.1为M的运动情况。

结果,该磁矩将围绕外加磁场并按照拉莫尔方程决定的旋进频率f0(Lamor频率)旋进,其中:

式中γ为旋磁比,由下式决定:

式中g为朗得因子,是粒子的自旋运动或轨道运动相对于其总角动量的度量。对于一个电子,g等于2.0023,而对于氢核,g为5.58490.自由电子和水中质子的玻尔磁力β分别为9.2712×10-21和5.04593×10-27J/T.h是普朗克常数,h= 6.626×10-34J .s.

把这些值代入(2-1)、(2-2)式中并取国际制单位,我们就得到水中的质子旋进频率为:

式(2-3)的重要特征是旋进频率与粒子磁矩和极化场方向的初始夹角无关。为了改变粒子的取向则必须要改变磁能,可以在与地球磁场垂直的方向上加入一个交变磁场去激发地下的11H质子,并让其激发磁场频率等于拉莫尔频率,拉莫尔旋进的方向取决于磁矩的符号,于是氢核11H的磁矩就会偏离地球磁场的方向从而形成宏观磁矩。这一宏观磁矩在磁场中产生旋进运动,其旋进频率为氢核11H所特有。当激发场停止后,宏观磁矩又会恢复到沿着地球磁场的方向,在这个短暂的恢复过程中,氢核11H将围绕地球磁场进动,从而产生一个按指数规律衰减的电磁信号即MRS信号,可以用仪器的天线接收这个电磁信号,即可探测地下水的存在.MRS信号示意图如图2.2所示。

MRS信号可用下式来表示:

式中E0(q)为MRS信号的初始振幅。q =I0τ为激发脉冲矩,I0、τ分别为激发电流脉冲的幅值和持续时间。ψ0为MRS信号相对于发射电流的初始相位,是天线中测量到的衰减信号与激发电流之间的相位差。T2*为平均衰减时间。E0(q)的强弱与氢核的数量及分布有关,即与所研究空间内的含水量成正比,T2*与含水层的平均孔隙度大小有关,ψ0与地下水的导电性有关.对测得的MRS信号作适当处理、解释,就可以确定地下水的分布。

在核磁共振探测地下水方法中,通常向铺在地面上的线圈(发射/接收线圈)中供入频率为拉摩尔频率的交变电流脉冲,交变电流脉冲的包络线为矩形。在地中交变电流形成的交变磁场激发下,使地下水中氢核形成宏观磁矩。这一宏观磁矩在地磁场中产生旋进运动,其旋进频率为氢核所特有。在切断激发电流脉冲后,用同一线圈拾取由不同激发脉冲矩激发产生的核磁共振信号,该信号为幅度按指数规律衰减的正弦信号。核磁共振信号强弱或衰减快慢与水中质子的数量有直接关系,即核磁共振信号的幅值与所探测空间内自由水含量成正比,这就是核磁共振找水方法的原理.图2.3为核磁共振找水探测原理图。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top