采用边界扫描法测试系统级芯片互连的信号完整性
试架构,建议在IEEE 1149.1指令集中增加一条新的指令EX-SITEST。这条指令类似于EXTEST指令,但增加了控制信号SI。在Update-IR状态,这条指令 被解码并产生(SI_1)。此时输出单元用作标准BSC,而输入单元用作OBSC。信号F在Capture-DR状态时被捕获,并在Shift-DR状态 期间以每个时钟周期的速度向外移位输出。本例中TAP控制器状态不会改变,但在指令解码时需要一些变化。存在于内核之间的EX-SITEST指令的数据流 如图8所示。
2. 测试过程
首先通过EX-SITEST指令装载TAP控制器IR,然后将所有的测试模式应用到互连上,同时ILS单元捕获互连末端的信 号,并检测所有可能的故障。在测试应用过程结束后,必须读取存储于ILS单元FF的结果。监视过程可以利用3种方法之一。比如使用方法3,应用所有测试模 式,然后一次性读出完整性信息。
3. 测试数据压缩
在传统的边界扫描架构(BSA)中,测试模式是一个一个扫描进来并应用到互连上。举例来说,采用最大入侵方(MA)故障模型 的n位互连中,12个测试模式被应用到每个受害线,在将测试模式应用到受害线上时要求12n 时钟。在n个互连间翻转受害线,总的时钟数量(测试应用次数)是12n2。当然,MA是一个简化模型。如果采用更复杂的模型或SoC中具有大量互连时,测 试模式数量会激增,此时压缩就显得很有必要了。本文介绍一种针对增加边界扫描架构的简单有效的压缩技术。由于空间有限,本文只能作一简要介绍,以此说明增 加型JTAG架构的灵活性。
这种压缩技术有二个关键点。首先,我们的方法是一个简捷的无损压缩法,通过确定相邻二个模式间的最大相似性并覆盖它们来构筑压缩位流。其次,由于这种压缩法即无破坏性也不对模式重新排序,因此不需要额外的解压缩硬件。而且仅是利用自动测试设备(ATE)通过控制JTAG TMS控制输入端执行解压缩过程。当测试模式产生后,常会有大量无关紧要的模式出现在测试模式集中。针对信号完整性产生的模式也是这样,特别是在考虑了地 区度量标准时(限制开发模式空间)更是如此。在任何情况下我们都假设测试集由相同长度的包含不重要的模式组成。图9表达了我们的基本压缩想法,即充分利用 不重要的部分覆盖尽可能多的位来完成2个模式Vi和Vj(长度是1_16)的压缩。
本文小结
在本例中,压缩后的数据(Vi,Vj)扫描输入时只需要21个时钟,而未压缩的数据需要16+16=32个时钟。需要注意的 是,为了解压缩指定的数据流,我们需要一个模式一个数字(如本例中的di和dj)才能构造(解压缩)模式。基于边界扫描测试的目的,这些数量就是更新 BSC单元内容前要求的移位(即时钟)数量。我们假设ATE存储着解压缩数据(d值如0≤d≤1),在扫描输入位流时,该数据会在d个时钟后激活TMS (测试模式选择)信号。然后TMS信号促使TAP控制器产生用于信号完整性测试的正确控制指令(如EX-SITEST)。因此在我们的架构中不需要额外的 解压缩硬件。
作者:Mehrdad Nourani
Dallas大学
Email: nourani@utdallas.edu
- 用JTAG边界扫描测试电路板、BGA和互连(11-06)
- 满足的嵌入式系统电路特性测试需求的JTAG技术(11-07)
- 用于系统级测试和PCB配置的高级拓扑结构(05-16)
- 满足嵌入式系统电路特性测试需求的JTAG技术(04-25)
- 探讨基于JTAG技术的嵌入式系统测试的各个阶段(09-24)
- JTAG测试(02-23)