检测更小、更致命缺陷所面临的障碍
摘要:与更先进技术节点相伴而生的不利之处在于,随着器件尺寸的缩小,那些在以前节点上曾经不太重要的缺陷和颗粒可能会变成器件杀手。
与更先进技术节点相伴而生的不利之处在于,随着器件尺寸的缩小,那些在以前节点上曾经不太重要的缺陷和颗粒可能会变成器件杀手。这样一来,就要求器件制造商具备更强大的、能够对越来越小的缺陷和颗粒进行检测的能力。虽然在半导体产业刚刚起步时,检测能力与尺寸缩小的缺陷之间的赛跑就已经开始并持续至今。但是现在及不远的将来,对3D结构进行形状表征面临着巨大障碍和各种基本限制,会给检查、测量和测试平台技术带来严重的挑战。
浸没式光刻带来的困难
浸没式光刻将加大缺陷检测的难度。正如Applied Materials公司工艺诊断和控制部门的市场策略经理Ehud Tzuri所说的那样,发现缺陷的难度增大"不仅是因为出现新的缺陷类型,还因为缺陷的尺寸大小。大多数的新缺陷都很大而且通常已被很好地了解,比如与浸没式光刻有关的水泡、水痕等等。"这些缺陷能够被控制到与干法光刻相同的程度,因为已经知道它们的来源。
然而似是而非的是,由于浸没式光刻的分辨率更高,因此出来尺寸更小的致命缺陷。晶圆上超过70%的缺陷都小于50nm。在早期的表征过程中,许多缺陷会被以前的设备漏检,不是因为它们不存在,而是因为这些设备无法检测到它们。这些小的桥接、基脚等极微小的缺陷--曾经被忽略或不用确认--现在已经变得很重要了(图1)。
必须对这些微小的缺陷进行检测。"提高分辨率是最佳的办法。"Tzuri说:"然而,传统的明场显微镜,即便是用DUV光源,也已经达到分辨率的极限了。因此不可能分辨出非常密集的图形,比如目前小于55nm的NAND闪存图形。" Applied Materials公司的解决方案使用结合深紫外(DUV)和激光照明的3-D采集方法,从而使缺陷检测的分辨率能够达到1/10波长的范围。
随着22nm节点的接近,光学检查将遇到很多问题,因此用电子束设备来检测极微小缺陷的必要性不断上升。这就要求提高电子束设备的单位时间的产量以适应大规模生产的需要--一个工程性的挑战。当然,光学和电子束方法可能会被结合使用。
有用的破坏性方法
FEI公司纳米电子事业群的产品市场经理Larry Dworkin相信,在32和22nm节点,对TEM数据的需求会大为增加。"系统被用于在整个晶圆上进行FIB辅助的TEM薄层准备工作,而晶圆的其余部分则能够被送回生产线。用TEM来分析这片小的薄层就可以确认缺陷的产生根源。"一些65和45nm器件制造商已经在这样做,而且将来还可能需要更多的扫描TEM和TEM图像,来研究那些只能通过电子束检查或电子探针来观察的缺陷(图2)。
在22nm节点到来之前,TEM必须从离线的实验室技术转变为进入fab的线上技术。短期目标是使检测周期缩短到2小时左右,而长期目标则是必须具有移动性。在应变硅领域需要考虑的重要因素是,当晶圆被切开时,样品内的应力会发生变化。这就要求采用新的TEM样品准备技术以防止薄层的变形。
在通往22nm节点的道路上,缺陷检测问题的严重程度将主要取决于我们是否使用目前的晶体管设计--尽管变得更小--在这种情况下会更多地用到TEM;标准的截面SEM和基本的自顶至底的CD-SEM无法测量或量化那些必须被观察的缺陷。取而代之的是finFET等3D结构。然而,传统的SEM和自顶至底CD-SEM技术不足以测量这些结构,因此非破坏性的测量技术成为必须。
一个明显的选择是散射测量。但问题在于它是否能够处理尺寸微小的、复杂度高的finFET结构,以及是否需要进行截面测量来帮助建立和验证散射测量的模型,或者是否最终需要这种技术来验证在线测量的结果。如果需要散射测量来全面了解finFET结构在22nm节点会发生什么,某些形式的截面测量可能是不可避免的。
分辨率和材料
设计规则的缩小推动了分辨率的提高。测量设备必须提供更高的分辨率来测量尺寸等于或小于设计规则的缺陷,特别是对逻辑电路而言。KLA-Tencor公司晶圆检查事业群的副总裁Mike Kirk相信,这不但会推动光学系统及其保真度的提升,还会提高图像计算的要求,因为必须处理更小的信息像素。他说:"从0.25mm节点到现在,像素的尺寸大约缩小了3倍。"
根据Kirk所说,向更高分辨率发展的速度很慢,因为如果采用20nm的像素,测量设备的操作会变得很慢和很贵。他说:"正如扫描式光刻机的开发者关注k因子一样,我们也有一个类似的因子,称之为缺陷与像素的比率。通过在像素尺寸给定的条件下找到尺寸不断变小的缺陷,我们不断地尝试着提高这个比率。为了获得
- KLA- TENCOR 推出最新晶片边缘检测解决方案(10-13)
- Orbotech发布Symbion P36 Plus自动光学检测系统(06-13)
- 意法半导体推出一系列低端单相电表前端测量IC(06-02)
- 安森美半导体推出高质量AB类音频放大器,(10-11)
- 意法半导体推出独立看门狗IC(11-30)
- IR推出全新基准MOSFET(11-21)